Improved Resolution of Tephra Deposits with Ground Penetrating Radar

Sarah Krusel: Charles Connor!: Kristin Martin; Raudl Mora?: Carlos Ramirez?; Guillermo Alvarado?

UNIVERSITY OF Sarah Kruse: skruse@cas.usf.edu; Charles Connor: cconnor@cas.usf.edu
SOUTH FLORIDA

I Department of Geology, University of South Florida, Tampa, USA
2 Red Sismolégica Nacional, Laboratorio de Sismologia, Vulcanologia y Exploracién Geofisica, Universidad de Costa Rica

Abstract

Numerical simulation and inversion of high resolu-
tion data on tephra fallout deposits offers an op-
portunity to fundamentally improve our ability to
estimate eruption parameters from deposits. Tra-
ditional trenching data is insufficient to ad-
equately constrain eruption parameters. Ground
penetrating radar (GPR) can change this by provid-

Using traditional contouring techniques and few  This is crucial for understanding how to apply Studies on Cerro Negro, Nicaragua and Irazd, On Cerro Negro, inversions for eruption
data, these real variations can be missed or  these models in tephra hazard forecasts. Be- Costa Rica demonstrate that GPR is beautifully parameters show excellent model fits to
masked in the interpretation process. Because  cause GPR transects provide an essentially con- suited to imaging tephra blankets in both dry tfephra volumes measured in trenches in
inversion produces a best-fit solution, and a fit  tinuous record of variation in the deposits, these and wet environments. Surveys with 100 and medial and distal facies. However the
that is easily quantified, departures of the nu-  data can have real impact on our analysis of 200 MHz antennas show clear reflectors same models show very poor fits to GPR-
merical model from the actual deposit can be  tephra deposits, our simulations of volcanic erup-  within the tephra fallout sequence are imaged derived tephra thicknesses in areas close
readily identified. These departures between  tions using numerical methods, and our confi- to 20 meters depth. In accord with trench (wihtin 2 km) of the vent.

observations and simulations provide details  dence in using such techniques to forecast volca- data, we interpret the bright reflectors as

ing high rgsolu’rion data C‘|°”9. confinuous tran-  ghout the physics of volcanic eruptions not cap-  pic eruptions. weathered horizons (paleosols in some cases)
SeCTi:TPC‘:T'C“'ﬁ'"|>£ whjg.ear.deposﬁrl Trh'c:”ezs IS ’(?ro tured by current models and provide clues about and abrupt changes in grain size and porosity
great To Trencn. 1lnaadition, real Tephra deposits  the |imits of current models. that mark intervals between eruptive events.

vary from ideal numerical solutions.

(1) The Problem (2) Ground Penetrating Radar Profiles

illustrated at Cerro Negro, Nicaragua. Cerro Negro is a small basaltic cinder cone that Can F'" Th|s DG"'G GGP

has erupted repeatedly since 1850. Vi / ) r“ L—: N

. Improving tephra hazard estimates requires improved TN 4/ L\;’ i ;EGEL;IE 1“-4~=~” Pilot studies on several volcanoes show that GPR is an excellent tool for imaging tephra up to
models of eruptions s s:i oWl Y thicknesses of 20 meters or more.
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