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Ground Penetrating Radar Response to Thin Layers: 
 Examples from Waites Island, South Carolina 

 
Swagata Guha 

 
ABSTRACT 

 

 Thin layers (layers that are not resolvable in terms of GPR wavelengths) are very 

common in sedimentary deposits. To better understand ground penetrating radar (GPR) 

wave behavior in sequences of thin layers with contrasting electromagnetic parameters, 

1D FDTD simulations are run for simple layer distributions.  Laminated (mm-scale) 

sequences can produce reflected energy with 10-20% of the amplitude of reflections from 

equivalent isolated contacts. Amplitude spectra from laminae packages are shifted toward 

higher frequencies.  Such spectral shifts in radar profiles may potentially be used as 

indicators of fine-scale laminations.  A comparative study of GPR records and models 

generated from core data from Waites Island, South Carolina, a Holocene barrier island, 

suggest that magnetite-rich laminae contribute significantly to radar profiles, but that 

some features in the radar traces cannot be associated with lithologic changes seen in 

vibracores.  
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Introduction 

 

 Geophysical methods can aid stratigraphic interpretation of sedimentary 

depositional environments by providing information on bed geometry and internal 

structures within the deposits. The stratigraphic interpretation depends on the resolution 

capabilities of the geophysical technique being employed. Ground penetrating radar 

(GPR) is one such non-invasive, portable device that can provide relatively high-

resolution, near-continuous shallow subsurface profiles. GPR is similar to seismic 

exploration in its approach, except that it utilizes electromagnetic waves rather than 

acoustic waves. Radar reflections produced are due primarily to variations in the 

dielectric properties of the ground; GPR wavelengths, and hence spatial resolution, are on 

the order of centimeters to meters. 

 Because of the wavelength dimensions, GPR can be used to delineate subsurface 

geology in various sedimentary environments.  Facies analysis of deltaic and coastal 

deposits, and recognition of internal structures of braided-river deposits, boundaries of 

ancient channel fills and river courses are some of the examples of radar stratigraphic 

applications for the reconstruction of depositional environments (Jol and Smith, 1991, 

1992, 1997, Heinz et al, 2003, Woodward et al, 2003). Coastal studies have incorporated 

this geophysical technique for various purposes, including demarcation of ancient and 

modern shorelines (Neal et al, 2003), sediment budget estimation (Van Heteren et al 

1996), description of facies (Baker, 1991, Gawthorpe et al, 1993), mapping of internal 

structures of sand dunes (Harari, 1996), and understanding the development of coastal 

landforms (Jol et al,1996, 2003, Nishikawa et al, 2000, Daly et al, 2002,  Neal et al, 2002, 

2003, Smith et al, 2003).  GPR has also proved to be a useful tool for estimation of water 

content in soils (Greaves et al, 1996, Hagrey et al, 2000, Schmalz et al, 2002) and 

detection of the water table in different environments (Van Overmeeren, 1998).  

 Most of the above-mentioned investigations have involved the stratigraphic 

interpretation of GPR profiles combined with field observations.  Fewer studies have 
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been devoted to understanding the physical causes of reflections in sediments. Among 

these, Olhoeft (1980s), Knoll and Knight (1994), Van Dam (2002 and more), and Moore 

et al. (2004) have addressed the relationships between sedimentary and electromagnetic 

properties that are responsible for reflection patterns in sands and aeolian sediments.  

There remain many settings where radar responses to sediments are poorly 

understood.  In particular, in many, if not most, sedimentary environments, bed 

thicknesses are much smaller than the radar wavelengths used. For reflecting strata whose 

thicknesses are ≥ 1/4th or 1/3rd of the radar wavelength, identification of reflections off 

the top of the strata and off the bottom as separate events in the GPR record is plausible 

(Fig. 1a).  However, for thinner layers it is impossible to assign a single reflection event 

to each contact (Fig. 1b). The GPR response acquired from a sequence of thin beds is an 

interference pattern produced by a complex interaction of the propagating radar wave 

with these layers. 

  In this thesis an attempt is made to better understand the nature of GPR responses 

to thin sedimentary layers, and to determine whether more information about thin layers 

can be derived from the frequency and attenuation characteristics of radar traces.  The 

relationship between sedimentary layer patterns and radar response is examined through 

several suites of simple numerical models. The numerical models are aimed at answering 

the following questions: 

1. What sort of thin-layer patterns typical of sedimentary environments will yield radar 

returns of significant amplitude? 

2. What are the effects of very thin beds (laminae) on radar returns?  Can any information 

regarding the nature of thin beds be derived from the frequency and attenuation patterns 

of radar records? 

 Finally, a comparative study of radar records and cores from a sandy barrier 

island setting has been conducted, adding to the relatively small volume of literature on 

the physical causes of radar reflections in sediments.  
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Ground Penetrating Radar in Sediments 

 

  Ground penetrating radar (GPR) systems emit electromagnetic waves from a 

transmitting antenna.  Part of this electromagnetic energy is scattered when the incident 

waves encounter an inhomogeneity in the subsurface, and wave energy reflected back up 

to the surface is detected by a receiving antenna.  Radar wave velocities are determined 

largely by the permittivity (dielectric constant) and magnetic permeability of the medium; 

wave attenuation primarily by the electrical conductivity of the medium and the wave 

frequency; and reflection coefficients at contacts by the contrast in the three 

electromagnetic properties—permittivity, magnetic permeability, and conductivity.  Both 

vertical and horizontal resolution limits in radar profiling are function of the radar 

wavelength, which is primarily controlled by antenna frequency and ground permittivity.  

Higher frequency antennas generate shorter wavelength radar pulses, from which finer-

scale features can be resolved.  However, stronger attenuation of high frequency pulses 

means that their depth of penetration is more limited.  Ground penetrating radar wave 

propagation is discussed in greater detail in Appendix 1. 

 In sediments in general, the petrophysical relationships between electromagnetic 

properties and the geologic and hydrogeological properties of strata are complex and 

relatively poorly understood.  Laboratory studies (e.g. Olhoeft,1994, Knoll and Knight, 

1994, van Dam and Schlager, 2002, Schon, 1996), theoretical models (e.g. Topp, 1985), 

and comparisons of radar records with cores and outcrops (e.g.  Jol and Smith, 1991, 

1996, Baker,1991, Wood, 1990, van Heteren, 1998, Vandenberghei and van 

Overmeeren,1999, Harari, 1996, van Dam and Sclanger, 2002) show that reflections in 

sediments are primarily controlled by changes in i) porosity, ii) mineralogy and iii) pore 

water content. Appendix 2 gives an overview of the physical causes of radar reflections 

encountered in different sedimentary environments. 

In many settings, the contacts between sedimentary strata (e.g. sands, muds, peat, 

organic-rich zones with variations in porosity, mineralogy, and/or water content) are 

often very closely spaced.  Sedimentary layers, designated as beds (thickness > 1 cm) or 

laminations (thickness < 1cm) (McKee and Weir, 1953) show a wide range of variability 

in their mode of occurrences (given in Appendix 3) in coastal, lacustrine, fluvial, and 
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aeolian environments. Imaging the depths of interest in geologic applications (meters to 

tens of meters), however, typically requires antenna frequencies low enough that the 

radar wavelengths are on the order of tens of cms or more.  Thus, it is common in 

sedimentary studies that GPR wavelengths are considerably greater than the thickness of 

many layers.  Commonly, the radar record represents the combined response to many thin 

layers (e.g. van Dam, 2003), and there is difficulty in identifying a one-to-one 

correspondence between an event in a radar profile and a contact observed in core or 

nearby outcrop. 

 

Wave response to thin layers (thin beds) 

Thin bed is a term widely associated with seismic exploration, especially for 

reservoir characteristics.  By definition, reflections obtained from the top and bottom of a 

thick bed are distinguishable in time, whereas, for an isolated thin bed separate responses 

from the top and bottom interfaces are not resolvable since the reflections overlap in time 

(e. g. Knapp, 1990). The resultant waveform from a thin bed is a single pulse which is an 

approximate time derivative of the source pulse (e g Widess, 1973).  For a bed of 

thickness ∆t, w(t) and –w(t + ∆t) are the wavelets of reflection from the top and bottom 

interfaces of the bed, the composite wavelet is given by (e. g. Knapp, 1990):  

w(t) –w(t + ∆t) ≈ ∆t dw/dt 

Widess (1973) showed for a Ricker wavelet incident upon thin beds, the 

amplitude of the composite reflection is linearly proportional to bed thickness and 

inversely proportional to the wavelength. The relation is given by:  

Ad ≅ 4πAb/λb 

where Ad is the amplitude of the composite wavelet, A is the amplitude of reflection for a 

thick bed, b is bed thickness, λb is the dominant wavelength in the bed.   

Widess (1973) demonstrated with the above expression, that for a bed in a 

homogeneous medium, the practical thick vs. thin resolution limit is attained when bed 

thickness is approximately 1/8th of the dominant wavelength (λ) i.e. the top and bottom of 

beds with thicknesses less than λ/8th cannot be distinguished as separate events (fig.1c).  

Clearly, GPR studies in sedimentary settings often deal with bed thicknesses that 

fall in the thin bed category. Furthermore, in most settings thin beds are not isolated, but 
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contained within strata composed of multiple thin beds or laminae. The wave response to 

such a package will be an interference pattern determined by the spacing of the individual 

lamina and their reflection coefficients. Examples of marine seismic investigations of 

sequences of thinly bedded show that strong reflections may be recorded even when 

individual layers are indistinguishable and reflected energy is a resultant interference 

pattern. Mayer (1980) showed that seismic reflectors observed in profiles of pelagic 

carbonate sediments did not corresponding to individual layers but a composite outcome 

of interferences from several small layers. Knapp (1990) studied seismic wave response 

to Upper Pennsylvanian cyclothems (alternating thin layers of limestone and shale) and 

arrived at the conclusion that a high frequency (> 500 Hz and a wavelength of 6m) would 

be required for better resolution of thin beds  

  Radar waves are expected to behave in similar way, in which one-to-one 

correlation of geologic horizons to GPR reflectors is not expected in many settings.  

There are relatively few examples, however, that examine radar wave response and the 

nature of the waveforms generated from a sequence of thin beds.  Van Dam (2002) 

showed for an aeolian deposit, with 100 and 200 MHz antennas radar responses were 

largely interference patterns. Kruse and Jol (2003) modeled GPR interactions to large (1-

2 m) and small-scale (cm) strata in a deltaic depositional setting, and found that graded 

sequences could not be distinguished from ones bounded by thin beds.  

 To determine whether information on thin beds could be extracted from radar 

records in sedimentary environments, several hypothetical scenarios are examined with 

the aid of numerical modeling. 
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Fig. 1a Reflection Event 1 is from top and reflection Event 2 is from the bottom of a 50 

cm thick layer. 
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Fig. 1b Reflection events distinguishable for thick layer (e. g. 40 cm) and 

indistinguishable for thin layer (e.g. 8 cm) in synthetic GPR traces. 
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Fig.1c Reflections from beds with decreasing thickness with respect to dominant 

wavelength, λ (Widess, 1973) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7



 

 

 

Models of GPR response to thin layers 

 

 Method 

 Radar wave propagation through thin layers is simulated with finite-difference 

time-domain (FDTD) codes.  These techniques are commonly used for GPR data analysis 

(e.g. Cassidy and Murdie, 2000, Wang and Mc Mechan, 2002, Teixeira et al, 1998, Kruse 

and Jol, 2003).  FDTD methods allow the user to simulate radar propagation through 

strata and features with variable permittivity, magnetic permeability, and conductivity.  

The signal recorded at a hypothetical receiving antenna can be compared against those 

observed in the field. 

 The FDTD methods propagate electromagnetic waves through a grid, solving a 

finite difference approximation to Maxwell's equations for electric and magnetic fields.  

The codes used here follow the classic staggered grid formulation of Yee (1966).  All 

models described in this study are one-dimensional (1D), and hence contain the following 

implicit assumptions:  (1) the transmitted energy is a vertically-traveling plane wave 

normally incident on the surface; (2) there is no offset between the transmitter and 

receiver positions; (3) subsurface layers are horizontal, smooth, and laterally 

homogeneous.  Furthermore it is assumed that there is no lateral or vertical anisotropy of 

physical parameters (electrical conductivity ( σ), relative permittivity/dielectric constant, 

(εr), relative magnetic permeability, (µr) which are further defined in Appendix 1 ).  The 

1D approximation fails to account for the dipole nature of typical commercial GPR 

antennas and attendant radiation pattern, geometrical spreading, effects associated with 

non-vertical incidence on interfaces, as well as any 3D complexities in the subsurface.  

Despite the obvious shortcomings, 1D modeling offers the advantages of rapid 

computations and a basic understanding of radar wave propagation behavior from 

studying simple scenarios, and is often used as a first step in GPR data interpretation 

(Bano, 1996, Kruse and Jol, 2003).  For the purposes of this study--to examine the first-

order characteristics of GPR returns from finely laminated sequences of thin layers—1D 
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modeling is adequate, and the benefits of 1D speed and simplicity outweigh the 

shortcomings. 2D and 3D modeling, beyond the scope of this study, are needed to fully 

address the limitations associated with the 1D approximation in this context.   

As the models developed here are aimed at interpretation of GPR response to beds as 

thin as 1 mm scale, the cell size in the finite difference grid (dx) used in the runs in this 

study is set to 0.25 mm and the time interval (dt) is 0.5 ns.  These grid parameters statisfy 

the Courant stability criteria and the recommendation that cells be smaller than 1/10 the 

wavelength (Kunz and Luebbers 1993).  As the thinnest layers in our models are 1 mm, a 

cell dimension of 0.25 means that individual layers are comprised of at least 4 Yee cells. 

All models assume a tri-lobed pulse similar to the one transmitted by the pulseEkko 

100 GPR systems (Sensors & Software Inc.).  

  

  Models and results 

 

 Two suites of layered models have been analyzed to better understand the 

response of radar waves of frequencies typically used in geological studies (50-400 MHz) 

to thin (mm-decimeter scale) layers of dimensions observed in sedimentary settings. In 

each suite, alternating layers with different relative permittivity, magnetic permeability 

and conductivity values form the layered models. 

 Prior to discussion of multi-layered models, the resolution of isolated layers under 

conditions potentially observed in coastal deposits is addressed.  For example, Figure 2 

shows a 50 cm thick layer of εr = 35, µr=1.2 and σ = 4mS/s sandwiched between layers of 

lower εr values of 20, µr= 1 and σ = 1mS/s. This could represent, for instance, a 

magnetite-enriched layer or a lower porosity layer within a package of saturated sand. 

The radar wave velocities are ~ 0.05 m/ns through the slower and more conductive 

central layer and 0.06 m/ns through the surrounding sand.  Figure 3 shows a pulse with 

center frequency 100 MHz traveling through the package.  The pulse on the left is the 

downgoing pulse as it crosses the air-ground boundary in the model. As the wave front 

encounters the top of layer 2, a fraction of the energy is reflected back and the reflection 

is recorded as Event 1.  Energy reflected back from the bottom of layer 2 appears as 
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Event 2. Because events 1 and 2 can be distinguished from one another, this layer is not 

considered a thin layer.  
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Fig. 2 Single-layer model 
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Fig. 3 Reflections from a single layer 

 

For the case where layer 2 is thin enough that the two events cannot be 

distinguished, the amplitude and form of the composite reflection follow the thin bed 

description of Widess (1973); reflection amplitude decreases with layer thickness.  Figure 

4 shows that for the hypothetical magnetite-enriched layer within saturated sand, the 

thick-thin bed transition occurs at ~20 cm thickness for a 100 MHz pulse.  In this case, 

the wavelength of the radar wave within layer 2 is ~50 cm, so the thick-to-thin bed 

transition for this radar scenario occurs where layer thickness is 2/5 central wavelength, 

slightly greater than the 1/8 wavelength criteria described by Widess (1973).  
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 It is worth noting that it is the wavelength and hence velocity in layer 2, rather 

than the surrounding medium, that determines its resolution.  Figure 5 shows, for 

example, a scenario identical to figure 4 excepting a faster (εr = 4) surrounding medium.  

The thin-thick bed transition thickness occurs again at ~20 cm.  

 As the thin layer threshold is based on the ratio of the layer thickness to pulse 

wavelength, the thin layer resolution limit will decrease with increasing antenna 

frequency (decreasing wavelength). For the magnetite-rich layer sandy layer considered 

here, Figure 6 shows the thin bed resolution limits versus antenna frequency for those 

frequencies commonly used in geologic surveys.  Even at 500 MHz, mm-scale laminae 

commonly seen in sedimentary environments fall well below the thin-bed limit. 

 

0.8cm  1.6cm  2cm  8cm 12cm 16cm 19cm 40cm 
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55  
        

Fig. 4 Change in trace form with increasing layer thickness (surrounding medium with εr 

= 20) 
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Fig. 5 Change in trace form with increasing layer thickness (surrounding medium with εr 
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Fig.6 Change in reflection form of different layer thicknesses at different 

frequencies. A transition thickness is observed at 39 cm for 50 MHz, 19.5 cm for 

100 MHz, 10 cm for 200 MHz and 4.2cm for 500 MHz 
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l layering within packages 

In practice in many sedimentary settings, thin layers are 

within packages

The first suite of multi-layer model

layering within packages could be resolved from radar records.  Figure 7 shows such a 

multiple layered model. Radar returns are modeled for a 30 cm thick package imaged 

with 100, 200, and 500 MHz pulses. The internal layers (dark zones on Fig 7) have 

properties of the isolated layer in the case considered above: εr = 35, µr=1.2 and σ = 4 

mS/s.  The interlayer spacing and background has εr = 20, µr=1 and σ = 1 mS/s.  In the

models, the interlayer spacing is kept fixed at 1 cm while the layer thicknesses are varie

from 1cm to 6 cm, 9 cm and 14.5 cm. 

For 100 MHz pulses incident on the package, (Figure 8a), the 30 cm packa

itself constitutes a thin layer, and the presence of internal layering produces no additional

signature in the overall reflection patt

30 cm thick layer. The amplitude of the returns from the package decreases 

somewhat with decreasing internal layer thickness. This is presumably due to 

increasingly destructive interference as layer thickness decreases, as well as a reduction 

in the bulk difference in material properties between the package and the surrounding 

medium for models with thinner layers.  The net result is that packages with finer internal 

structure will have lower amplitude returns.  For the model scenario here, however, these 

differences are subtle enough that they might be difficult to resolve in practice.   

  For higher frequency pulses, e.g. 200 MHz (fig. 8b) and 500 MHz (fig. 8c) 

incident on the same model packages, the total package itself does not constitute a thin 

layer (reflections from top and bottom can be distinguished), and some informatio

internal structure can clearly be resolved.  In both cases, energy returns from within 

"thick bed" package are significant (i.e. returns from within the package have amplitude

~ 50% or more of the package boundary reflections) for all models except the uniform 

(30 cm) layer and the models in which both layers and interlayers are 1 cm in thickness. 

Only the 500 MHz returns from packages with thicker internal layers show peaks that can

be correlated with individual interlayers. In summary, for the velocities considered here
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layering on scales of a few cm to 10s of cms can yield interference patterns with 

amplitudes of 50% or more of those from thick bed contacts. For layering on 1-cm scale, 

returns from within the package are much smaller (~2.1% of the return from the top of 

the bed).   
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Fig. 7 Model with internal layerings with 30 cm package 
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Fig 8b 
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Fig. 8c 
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Laminae 

The models above indicate that for the "saturated sand" scenario returns from cm-

scale layering should be low in amplitude, an order of magnitude smaller than returns 

from equivalent thick bed contacts.  We note, however, that in the above models, the low-

amplitude response in the 1-cm layer stems in part from geologically implausible 

assumption that all layers are exactly 1 cm thick.  In fact, GPR surveys in sandy coastal 

environments in many cases do yield coherent returns in settings where only mm-thick 

laminae, separated by mms or cms, are visible in cores or trenches (e.g. Hand, 1998, Dog 

Island thesis; Moore et al. (2004). 

 To better understand conditions under which laminae could generate a significant 

radar response, a suite of layered models simulating sedimentary laminations is 

generated.  In this suite the "magnetite-rich" (dielectric constant = 35, relative magnetic 

permeability = 1.2 and conductivity of 4 mS/m) layer thickness is kept constant at 1mm 

and the "saturated sand" (20, 1 and 1mS/m) interlayer spacings are varied.  In each 

model, the interlayer thicknesses are set t sian distribution about a fixed mean.  

odels were run with means of 2 mm, 5 mm, and 50 mm, with standard deviations set to 

half of the means (1 mm, 2.5 mm and 25 mm respectively).  To satisfy model constraints 

the Gaussian interlayer thickness distributions were then rounded to the nearest 0.25 mm, 

and set

o a Gaus

M

 no thinner than 1 mm (fig. 9).   

 

 
Fig.9 Schematic representation of model suites A –2 mm interlayer space; B – 5 

mm interlayer space; C –50 mm interlayer space. Dark zones represent layers. The 

interlayer spaces follow a Gaussian distribution and are not constants as shown in figure. 
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The amplitudes and frequency characteristics of the returns from the layered 

models are examined for pulses with center frequencies of 100, 200 and 500 MHz.  

Sample traces are shown in fig 10a, 10b and 10c.   Peak amplitudes of the interference 

patterns returns from the laminated zones are on the order of or greater than the 

amplitudes of the 1cm models of the suite above, despite the fact that the amplitude of the 

return from each single lamina would be an order of magnitude smaller.  The Gaussian 

distribution of laminae generates periods of constructive interference not simulated with 

fixed spacing cm-scale models, and it is clear that the assumed distribution of interlayer 

(in this case interlaminar) thicknesses influences the interference patterns. 

The frequency spectra of the traces are computed using a standard Fast Fourier 

Transform (fft) algorithm in Matlab.  The ffts were run in each case for a time window of 

22ns that spans energy returning from the layered package. The spectra, shown in Figure 

11, have been averaged for three realizations of each model. 

 

correlated with the fact that reflected energy is being generated in response to the 

multipl rter 

 

s 

A spectral shift towards higher frequencies is observed in the returns for all three 

models (Figure 11a, 11b, 11c).  When compared with the original input pulse, more

energy is being returned to the surface at higher frequencies. This can possibly be 

e thin layers. The higher frequency components of the pulse correspond to sho

wavelengths.  Since wavelength is inversely proportional to the reflection amplitude

(following the equation Ad ≅ 4πAb/λb, Widess, 1973), the higher frequency component

should perceive correspondingly greater reflection coefficients.  
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Fig 10a 
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Fig.10b 
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Fig.10c 

 

Fig. 10 Reflections from a sequence of layers with fixed layer thickness (1mm) and 

varying interlayer spaces at different frequencies. 10a – interlayer space =2 mm (mean), 

10b – interlayer space = 5 mm (mean), 10c – interlayer space =50 mm (mean) 
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Fig. 11b 
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Fig.11c 

   

 Fig.11 Averaged amplitude spectra for different models at 100 MHz (fig.11a), 

200 MHz (fig.11b) and 500 MHz (fig.11c). 

                

Summary and discussion of model results 

 

 Single layer models:  The GPR resolution limit for isolated thin, K=35 beds 

within saturated sands (K=20) is examined, following the form of the seismic analysis of 

Widess (1973).  Considering antennas typically employed in geologic studies, resolution 

limits decrease from ~40 cm (50 MHz) to 4 cm (500 MHz). 

 Package with internal layering (30 cm package, cm-scale layering):  When the 

package thickness itself is at the thin bed resolution limit (100 MHz case), finer-scale 

internal layering tends to simply reduce overall reflection amplitude.  When the package 

is thick (200 and 500 MHz examples) internal layers may be directly resolved or appear 

as an interference pattern.  Returns from internal layering drop off dramatically in 

amplitude when interlayer and layers are both thin and similar in dimension, in this case 

on the order of 1 cm.  This suggests that for significant amplitude returns in an 
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environment characterized by the velocities assumed here, there must be variability in the 

layering, or layering on scales of ~5 cm or more. 

 Fine laminae (separated by mm to cm): These sets of models deal with multiple 

thin layers, 1 mm in thickness, with mean interlayer spaces of 2 mm, 5 mm, and 50 mm.   

Reflection amplitudes from packages of laminae, can be as high as 10 or 20% of the 

equivalent thick bed reflection.  Amplitudes are higher for the models with mean 

interlaminar spacing 5 and 50 times the lamina thickness, than for mean interlaminar 

spacing two times the lamina thickness.  Thus, irregularity in laminar and interlaminar 

thicknesses tends to increase amplitudes. 

Models of returns from lamina packages show spectral shifts toward higher 

frequencies.  Such a spectral shift in portions of a trace may thus perhaps be an indicator 

of fine-scale (mm to cm scale) layering within a unit. 

 The models show, as expected, that higher frequency waves have stronger 

amplitude returns from lamina packages.  Thus in theory, criterion for identification of 

the presence of laminations in a sequence calls for a comparative analysis at both low and 

high frequencies.  This may be difficult in practice, however, as intrinsic attenuation 

increases with increasing frequency, and this effect will probably outweigh lamina 

effects.  
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Case study: Waites Island, South Carolina 

 

 Geologic setting 

 Waites Island is located on the northeastern coast of South Carolina and forms a 

part of the Grand Strand barrier island system (fig.12). This 5 km long and 0.5 km wide 

Holocene island (Wright et al, 2001) has a seaward beach and dune system.  Moving 

from the shore toward the mainland, it has five distinctive depositional environments: 

namely, washover / barrier island, salt marsh, back-barrier intertidal, back-barrier subtidal 

and fresh water peat (Adam et al, 2001), (fig.13). As part of a larger study of the 

stratigraphic development of Waites Island, extensive subsurface imaging was done using 

GPR. In this thesis, we examine profiles across two sites in the northern part of the 

island, where cores were taken. 

 

 Data collection and processing 

   Two sets of GPR profiles were collected using a PulseEKKO 100 system 

manufactured by Sensors and Software Inc.  The first, in May 2002, was a long transect 

(LINE 1) run across the island, perpendicular to the shoreline, with 100 MHz antennas 

(Fig.12).  Readings were collected at fixed time intervals, and traces were correlated with 

position every 5 meters.  Trace positions were then linearly interpolated between the 

known values, and the profiles resampled to a uniform spacing of 0.25 m. 

 The same core sites (fig. 12) were then revisited in February, 2003 when shorter 

profiles and CMPs centered over the two core sites were collected, both parallel and 

perpendicular to the shoreline, with 50 MHz, 100 MHz and 200 MHz antennas. 

Transmitters with voltages of 400 V (200 MHz and 100 MHz) and 1000 V (50 MHz) 

were used.  

 Data processing was done with the aid of PulseEKKO version 4.22 software to 

remove noisy traces from the original records. Other processing steps involved merging 

data files and applying dewow filters and AGC gains to the data. 
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 Conversion of the two-way travel time to depth was done by the conventional 

CMP velocity analysis (Appendix 1). The best-fitting velocities were found to be 0.12 

m/ns for the unsaturated zone and 0.07 m/ns was obtained for the saturated zone. The 

saturated and unsaturated zones are demarcated on the GPR reflection profiles on the 

basis of the position of the water table (fig. 14) 

The GPR profiles span locations where vibracores were collected in August, 2002 

at sites WI1 and WI2 (on fig.12). Detailed descriptions of cores are given in Appendix 4. 

Site WI1 is located in the dunes of a ridge/dune system formed parallel to the shore and 

WI2 is located in a low in the dunes on the landward side of the barrier island (Eric 

Wright, personal communication). Further coring was done at the same sites in August, 

2003. These cores were acquired for analysis in a Multi-Sensor Core Logger (MSCL) to 

determine sediment bulk density. Lengths of core sections were approximately 1m.  

 A Schlumberger resistivity survey was conducted at site WI2 to obtain the ground 

apparent resistivity and hence conductivity informaion. 

 

  Reflection profiles and CMPs       

        Reflection profiles at site WI1 (fig. 14) show two prominent reflectors, R1 

and R2, at depths of 2.5 m and 5 m respectively. R1 represents the water table whereas 

R2 is interpreted as reflections from a marsh layer, correlatable with the top of the marsh 

layer in core section WI1 (D) in fig.18. At site WI2, profiles show the water table as the 

single strong reflector (fig.15). These reflection events are also identified in the CMPs 

(fig.16 and fig17). The presence of reflections other than those mentioned above is 

noticeable in profiles at both sections. These additional reflection events cannot be 

associated with any conspicuous lithologic changes in the core sediments. 

 To better understand the nature and characteristics of the radar reflections at 

Waites Island, the vibracore sediments were analyzed in the laboratory. 
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  Fig. 12 Infrared aerial photo of Waites Island showing cross-island GPR transect (LINE 1) and core sites  

   WI1 and WI2 on LINE 1. 
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Fig.13 Waites Island cross section along LINE 1 showing different depositional 
environments as interpreted from vibracores and GPR data (Eric Wright, personal 
communication) 
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    Fig. 14 Reflection profiles at core site WI1  
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   Fig.15 Reflections profiles from core site WI2 
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Fig. 16.  CMP at site WI1. (a) at 200 MHz, (b) at 100 MHz and (c ) at 50 MHz 
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Fig.17 CMP at WI2 (a) at 200 MHz, (b) at 100 MHz and (c) at 50 MHz 
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Laboratory Methods 

   Core sediment analysis 

  The split sections of cores (WI1 and WI2) were photographed (photos 

obtained from Marine Science at Coastal Carolina University, E. Wright, personal 

communication). Figures 18 and 19 show the split-core sections.  The presence of finer 

layers of heavy minerals or beach laminations (e.g. Komar, 1974), in different portions of 

each of the cores is the most noticeable heterogeneity in the sediment.  Section WI1 (A) 

of WI1 (collected in August, 2003) contains extensive layers (mm scale) of heavy 

minerals alternating with fine sand from a depth of 45 cm to 110 cm (fig. 18b). 

   Sediments of core section WI1 (A) were analyzed for bulk density and 

porosity information by running it in the Multi-Sensor Core Logger at the University of 

Florida, Gainesville. Data sampled had a sampling interval of 0.5 cm. The gamma bulk 

density has a slightly high value from 50 cm to 80 cm of the core and a gradual drop is 

seen for core sediments after 80 cm (fig. 20). However, no other significant change is 

observed in the overall data. The corresponding porosity values increase from 80 cm to 

the base of the core (fig. 20).   

 Grain-size analysis was done for samples of core section WI2 (A) using the sieve 

analysis method. Grain size distribution patterns are the same for all samples (fig.22). 

Heavy minerals formed the finer particles in all samples. 

  To obtain a better image of the lamination patterns in WI1 (A), a lacquer 

peel was made from which the layer thicknesses were measured. The individual heavy 

mineral enriched layers are approximately 1 mm in thickness. At places they are very 

closely spaced forming a zone with a thickness of 2-5 cm (18b). The lacquer peel helped 

in the measurement of individual thin heavy mineral layer and their interspaces which 

would otherwise be difficult to discern from the split core.  

 A Bartington susceptibility meter was used to acquire the magnetic susceptibility 

of sediment samples from 40 cm to 110 cm of the core where the heavy mineral 

laminations are in abundance. A sample volume of 8 cc was taken from the central 

portion of the core starting from 40 cm and ranging to 110 cm for measuring the 

susceptibility. Samples were collected every 2 cm.  
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The susceptibility data as given in figure 22 shows an appreciable match with the 

lamination patterns obtained from the lacquer peel.  

 Some samples of the concentrated heavy minerals from WI1 (A) at depths of 65-

70 cm and 105-110 cm were separated using non-toxic heavy mineral separation liquid, 

Sodium Polytungstate. The primary objective of this separation was the identification of 

iron-oxide-bearing minerals such as magnetite from other heavy minerals (e.g. zircon, 

apatite). The presence of magnetite (dielectric constant value of 33.7 (Schon,1996) can 

serve as a prominent reflecting surface when forming a lamina Deposition of magnetite 

along lamination boundaries in dune sands causing GPR reflections has been noted by 

Harari (1996).  Baker (1991) also correlated GPR reflections from heavy mineral layers 

in a barrier island sand deposit. 

   On the WI1 (A) core, samples taken from 55-60 cm and 85-90 cm from the same 

core were treated with a strong bar magnet which resulted in separation of magnetite 

particles (fig. 23).  Thus GPR returns from this setting are likely generated by the 

magnetite-bearing laminae, in addition to the water table, marsh contact, and other 

variations not seen by eye or in the porosity structure.  
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Fig. 18 (a) Core sections of WI1, (b) layer patterns obtained from lacquer peel of  
WI1 (A).  Core description given in Appendix 4. 
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 Fig. 19 Core sections at site WI2 
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Fig. 20 Magnetic susceptibility, gamma bulk density and porosity values for core section WI1 (A) 
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 Fig. 22 Grain size distribution for core section WI2 (A). Samples collected at 
intervals of 5 cm as represented by rectangles on core diagram.  
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Layered models simulating core laminations 

 To test the hypothesis that the Waites Island radar profiles could in fact be 

produced by the fine-scale layering and other contacts seen in the cores (as well as the 

water table), two sets of models have been designed.  Model 1 simulates the lamination 

patterns as obtained from the lacquer peel and photographs for core WI1, and model 2 the 

core WI2 based on descriptions of core photos. 

 Fig. 23 gives the schematic presentations of the layered models.  Models were 

required to (1) assume geologically plausible values of permittivity, magnetic 

permeability, and conductivity; (2) have contacts at observed depths; (3) fit the observed 

average saturated and unsaturated zone velocities; and (4) have bulk conductivity on the 

order of 1-5 mS/m (as observed in the field). 

Since the 1D model does not account for attenuation of energy due to geometric 

spreading, a factor of 1/r 2, where r is the distance traveled and ,∫= dttvr )(  has been 

applied to the model traces. 

 

Model parameters 

 Model parameters that satisfy the constraints are given in Table 1.  As most 

petrophysical parameters (e.g. moisture content, organic content, iron-oxide content, 

grain shape and orientation) of the Waites core are unknown, these models are non-

unique in the sense that many models could be generated that yield equivalent or better 

fits to the observations.   Without better knowledge of core characteristics, fine-tuning of 

the models to better fit observed traces is not warranted.  Here discussion is focused 

simply on the quality of these simple models, and addressing the question: can the basic 

features of the radar traces be explained from contacts and layer patterns visible in cores? 
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Fig. 23 Schematic representation of Model 1 (A) and Model 2 (B) 
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Table 1.  Physical parameters used in model simulations 

Model 1 K (dielectric 

constant) 

µr (relative 

magnetic 

permeability) 

σ  S/m 

(conductivity) 

 unsaturated 

sand 

3 1 0.001 

 saturated sand 20 1 0.001 

 magnetite 15 1.1 0.004 

 mud  17 1 0.002 

 marsh 6 1 0.003 

  

Model 2 K µ σ  S/m 

 unsaturated 

sand 

6 1 0.001 

 saturated sand 20 1 0.004 

 magnetite 15 1.1 0.003 

 

 

 

Analysis of models 

 GPR traces were selected from the records at the two study sites. Plots of 

individual traces at different frequencies are compared to traces produced by the models 

as given in fig. 24 and fig. 25.  Analysis focuses on the saturated zone, for which the 

water table reflection provides a convenient reference signal.  In these models the water 

table is simulated as a 20 cm-thick contact across which electromagnetic properties 

change linearly. 

Pattern of returns:  The 60 cm package of laminations present above the water 

table does not yield significant distinctive returns in either observed or model records.  

Radar wavelengths are longer in the faster unsaturated zone, and detectable returns would 

 39



be confined to a short time window between direct arrivals and the water table 

reflections.  Reflections from within the saturated zone for require the presence of 

changes that are not incorporated in Model 1. (Some of the observed returns may 

represent diffractions). The saturated zone of WI1 lacks heavy mineral laminations, but 

the mud and marsh layers include sporadic mud lenses and organic materials.  Perhaps 

the muds lenses and organics are part of coherent layers on a larger scale.  

   Model 2 is a laminated section (laminations present above and below water 

table) consisting of sand and magnetite layers (mm and cm scale).  The 200 MHz model 

result shows reflection patterns similar to the GPR record (Figure 25a). The presence of 

thin magnetite layers is sufficient to explain the reflections seen in the 200 MHz record.  

However, comparing the lower frequency GPR responses at 100 MHz and 50 MHz at this 

site points out that lithologic changes on a larger scale than the laminations exist that are 

not perceptible in the core data, particularly in the deeper parts of the record.  

 Attenuation:  For both sites, exponential decay curve fits of the observed and 

model trace envelopes yield higher attenuation coefficients for the models.  This 

discrepancy may be due to: (a) unrealistically high conductivities in the models; (b) poor 

modeling of the water table reflector; (c) underestimation of the true attenuation due to 

noise late in the record; and/or (d) underestimating contrasts (reflection coefficients) 

between layer types.  Better estimates of the layer contrasts could be derived from 

amplitude-versus-offset analysis of the data (e.g. Kruse and Jol, 2003), which is beyond 

the scope of this work.  Explanation (a) is unlikely, as the Schlumberger resistivity survey 

at site WI2 (fig. 28) shows a conductivity of 5 mS/m; at radar frequencies the effective 

terrain conductivity should be higher, rather than lower. 

 Spectra:  Comparison of spectra from models and data are of little utility, as there 

is not a good constraint on the spectra of the downgoing pulse in the observations.  

However, one can compare spectra of 100 MHz traces from sites with known laminations 

(near WI2) with those from sites without (near WI1).  From model results of the previous 

section, it is infered that an upward shift in the amplitude spectrum should be associated 

with returns from fine layered packages will result with increasing frequencies.  Traces 

from the 100 MHz (LINE 1) cross-island transect have been selected. Amplitude 

spectrum of traces consisting of reflections from fine layers in the saturated zone at site 
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WI2 (Figure 29b) show a spectral shift relate to that from the saturated non-laminated 

zone of WI1 (Figure 29a).  Thus, spectral analysis of traces may be a useful measure to 

identify presence of thin layers in coastal deposits.  
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Fig.24a 
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Fig.24b 

Fig.24 Comparison of real and model traces for site WI1. 24a—200MHz, 24b – 100MHz 
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Fig. 25a 
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Fig. 25b 
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Fig.25c 

Fig. 25  Comparison of real and model traces for site WI1. 25a—200 MHz, 25b – 100 

MHz, 25c – 50 MHz 
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Envelope of model trace at site WI1 at 200MHz
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Fig.26a 
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Averaged envelope of traces at site WI1 at 100MHz
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Envelope of model trace at site WI1 at 100 MHz
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Fig.26b 

 

Fig. 26 Expotential trend of attenuation in real and model data for site WI1 at different 

frequencies. 
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Averaged envelope of traces at site WI2 at 200MHz 
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Envelope of model trace at site WI2 at 200MHz
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Fig.27a 
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Envelope of model trace at site WI2 at 100MHz
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Averaged envelope of traces at site WI2 at 50MHz
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Fig.27c 

Fig. 27 Expotential trend of attenuation in real and model data for site WI2 at different 

frequencies. 
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Schlumberger resistivity at WI2
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Fig 28 Layer model apparent resistivity and layer thicknesses estimation (program used 

ENVIRT6). 
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Fig.29b 

Fig. 29 Averaged amplitude spectra of GPR traces at two different sites (close to WI1 and 

WI2) along LINE1.  

 

 51



 

 
 

Conclusions 
 

   Thin beds are common in GPR surveys in sediments, but extracting information 

on thin beds from GPR profiles has not been widely discussed.  From simple models of 

radar wave propagation, and comparative analysis of GPR records and core sediment 

records from a sandy barrier island, the following conclusions are drawn: 

 

 1)  The presence of multiple thin beds, such as magnetite-enriched laminae in 

coastal sedimentary deposits, can produce low-amplitude but detectable GPR returns at 

the commonly-used frequencies of 100 to 500 MHz.  The returns cannot be directly 

correlated with individual laminations.  Return amplitudes will depend on the distribution 

of layer and "background interlayer" thicknesses, and as the difference between layer and 

interlayer thickness increases.  Layering within packages with package thickness near the 

thin bed limit would be difficult to detect. 

 2)  Spectral analysis of both model and real traces indicate that the presence of 

mm-scale laminations is accompanied by a spectral shift towards higher frequencies.  

Spectral shifts may serve as an indicator of local zones of thin laminations. 

 3) Comparison of observations with models based on contacts seen in cores in 

Waites Island, SC, suggests that thin magnetite-rich layers are important contributors to 

the radar signal, especially at 200 MHz, but do not in themselves explain all the major 

features of the radar record.  Contacts not noted in cores, perhaps subtle variations in 

porosity, are required to explain the basic pattern of returns and attenuation 

characteristics of the Waites GPR profiles. 
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Appendix 1 

 Radar wave propagation 

 The properties of the ground determine the key aspects of the radar wave propagation, 

namely (1) its velocity and (2) its attenuation. 

For high frequencies or very low conductivity, the above equation becomes µε/cv = . 

where c = electromagnetic wave velocity in vacuum (3 x 108 m/s) and the properties of the 

medium the wave travels through are µ = magnetic permeability  and ε = dielectric permittivity. 

So both permittivity and magnetic permeability play important roles in determining the velocity.  

 Electromagnetic waves attenuate with increasing distance from the transmitter due to 

spherical spreading of energy, scattering from heterogeneities and dissipation of energy into 

subsurface materials (Annan and Davis, 1989).  The attenuation of the downgoing pulse due to 

the latter can be expressed by 

 A= A0 e
-αz where A is the amplitude of the pulse at some distance z from the source, A0 is the 

pulse amplitude at a given distance z0, and εµσα /5.0=  (Van Dam, 2000).  

 

Reflection coefficient, resolution, depth of penetration 

 Reflection coefficient determines the amplitude response of the reflected signal from 

layers of different dielectric properties. For normal incidence, reflection coefficient 

12

12

ZZ
ZZR

+
−

=  , Z1 and Z2 are impedances of lower layer and upper layer respectively. 

(Impedance, )/( ωεσωµ jjZ +=  where 1−=j , fπω 2= , angular frequency, expressed in 

radians/s).   

 

Physical parameters influencing radar wave propagation 

 Dielectric constant, electric conductivity and magnetic permeability are three parameters 

influencing radar wave propagation.  

Dielectric constant: 

  Of the greatest significance among the three, is relative permittivity. Relative 

permittivity (εr ), also referred to as dielectric constant (K), is defined as the ratio of material 

permittivity (ε), to that of vacuum (ε0 = 8.85 x 10-12 F/m).  
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Appendix 1 (continued) 

 Dielectric constants for earth materials are strongly influenced by water content, and 

hence by both degree of saturation and porosity of the material. Table 1 shows dielectric constant 

values for some geologic materials. While air has a K value of 1, water has K ≈ 80. So an 

increase in water content is associated with a corresponding increase in permittivity. A porous 

material with greater water content than a nonporous substance will show a greater K value.  

Experiments show that bulk dielectric constant is also influenced by the pore internal geometry 

and pore fluid configuration (Endres and Knight, 1992), and thus mixing formulas that account 

for these effects are required for full understanding of dielectric constants. Clay content, which 

influences water retention capacity, also governs dielectric properties (Schon, 1996). 

 

Electrical conductivity 

 According to Archie’s equation (Archie, 1942), bulk conductivity (σ) of porous materials 

varies with water content. 

    cw
nmsa σσφσ +=

where  φ  = porosity, wσ = pore water conductivity, cσ  = soil grain surface conductivity, 

 a = constant between 0.4 to 2, m=constant between 1.3 to 2.5, s= degree of saturation, 

and n = constant ~ 2 

  Archie’s Law shows that high conductivities in geologic materials may be due to both 

grain size effects (e.g. clays) or pore water influence (e.g. saline water).  For most materials, the 

conductivity is assumed to be isotropic although it may vary in anisotropic materials such as 

along bedding planes in stratified rocks (Telford, 1984). 

 

Magnetic permeability  

 It is given by )1(0 k+= µµ  where 40 =µ π x 10-7 H/m is the magnetic permeability for 

vacuum and k is magnetic susceptibility. 

For most GPR purposes, magnetic permeability does not hold a major influence as compared to 

the electrical effects. However, the presence of iron oxides e.g magnetite in soils or rocks will 

result in changes in magnetic susceptibility. 
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Appendix 1 (continued) 

 

Table 1. Dielectric constant, conductivity, velocity and attenuation of some geologic  
 material (from Annan and Davis, 2002) 
 
 
Material K σ  (mS/m) v  (m/ns) a  (dB/m) 
Air 1 0 0.30 0 
Fresh water 80 0.5 0.033 0.1 
Sea water 80 3 x 103 0.01 103

Dry sand 3-5 0.01 0.15 0.01 
Saturated sand 20-30 0.1-1.0 0.06 0.03-0.3 
Limestone 4-8 0.5-2 0.12 0.4-1 
Shales 5-15 1-100 0.09 1-100 
Silts 5-30 1-100 0.07 1-100 
Clays 5-40 2-1000 0.06 1-300 
Granite 4-6 0.01-1 0.13 0.01-1 
Ice 3-4 0.01 0.16 0.01 
 

 

GPR resolution and depth of penetration 

 Resolution involves the detection of reflection events separately from one another in 

temporal and/or spatial domains and needs to be considered in both the vertical and horizontal 

directions.  

 Vertical resolution 

  Vertical resolution implies distinction between reflections from closely spaced 

contacts, one overlying the other, e.g. reflections occurring from the top and bottom surfaces of a 

sedimentary layer. It depends on the pulse width and is generally considered to be ¼ of the 

dominant wavelength (Kearey and Brooks, 1991).  Because resolution increases with decreasing 

dominant wavelength, it increases with increasing frequency. However, with increasing depth 

higher frequencies undergo greater attenuation due to energy loss and hence vertical resolution 

generally decreases with increasing depth (Irving and Knight, 2003). 
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Appendix 1 (continued) 

 

Horizontal resolution 

 Horizontal resolution expresses GPR’s ability to distinguish reflection events from 

closely spaced targets at equal depths. It depends on the Fresnel zone, which is the interface from 

where the reflected energy within half the transmitted wavelength undergoes constructive 

interference to enhance the resultant reflection. The Fresnel zone width is given by the following 

equation:  

)2( λzw ≈ , for z >> λ where w = width, λ = wavelength of source and z =reflector depth 

(Kearey and Brooks, 1991). 

 The Fresnel equation governs horizontal resolution because reflectors separated by a 

distance less than the Fresnel zone width cannot be distinguished as separate events in the 

reflection records (Kearey and Brooks, 1991). Horizontal resolution decreases with depth as the 

Fresnel zone width increases with depth, but also decreases with increasing depth of investigation 

due to the dispersion effects (loss of higher frequencies) discussed for vertical resolution. 

 

Depth of penetration 

 Because terrain conductivities are frequency-dependent, and generally increase with 

increasing frequency, as discussed above, depth of penetration is largely dependent on the 

transmitter frequency. There is thus a tradeoff--higher frequency will limit the depth of 

investigation but will result in a better resolution.  Fig.1 gives a relationship between different 

antenna frequencies and probable depth of penetration in unconsolidated sediments (Smith and 

Jol, 1995). 
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Appendix 1 (continued) 

 

  
 
 
 
Fig.1 Comparison of different antenna frequencies with maximum probable depths of penetration in 

Quarternary unconsolidated sediments. Interpolation of points along best fit line indicates maximum 

robable depths of investigation of 66m and 18m for 12.5 MHz and 400MHz respectively (Smith and Jol, 

1995). 
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Appendix  2 
 
 
Sedimentary Environment Reflectors Reference 
   

 
Coastal 
 
 Barrier Island 
  
 
 Spit 
 
 
 Beach ridge 
 
 
Lacustrine deltas    
 
 
 
Fluvial deposits 
 
 
Aeolian deposits 
                            

Sand-silt contact 
Freshwater-brackish water 
contact 
 Peat, heavy mineral layers 
 
Sand-mud interface, lag 
deposits 
 
Cheneir deposit (sand-shell, 
sand-silt contacts) 
 
Mud-peat contact 
Sand-peat contact 
Peat-clay contact 
 
Silt, gravel, peat, water 
table 
 
Heavy minerals 
 
Sand-silt contacts, organic 
content, iron-oxide 
(goethite with high water 
retention capacity) content 
 
Soil lamellae 

Jol et al, 1996 
 
 
Baker, 1991 
 
Van Heteren et al, 1998 
Daly et al, 2002 
 
Neal et al, 2002 
 
 
Jol and Smith, 1991 
Van Heteren, 1997 
Wood, 1990 
 
Vandenberghe and van 
Overmeeren, 1999 
 
Harari,1996 
 
van Dam and Schlager, 
2002 
 
 
 
Tomer et al, 1996 
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Appendix 3 

 
Layer patterns in sedimentary environments 
 
 Delineation of sedimentary features has been a prime objective of stratigraphic research. 

Due to its efficiency as a high-resolution subsurface exploring tool, GPR has been greatly 

employed to these studies. In this section, sedimentary bed geometry in some depositional 

settings is discussed as a prelude to the following sections that will deal with GPR response to 

diverse layer patterns. 

 

Beds and laminations 

  A primary depositional feature of sedimentary succession is layers or 

stratification which is defined by mineralogical and textural differences of a layer from its 

adjacent ones. Classified on the basis of their morphology, sedimentary layers are designated as 

beds (thickness > 1cm) or laminations (thickness < 1cm). McKee and Weir (1953) proposed 

further subdivision of beds and laminations on the basis of their thickness.  

 A bedded sequence itself may be composed of several beds that are defined by bedding 

planes. Pettijohn (1984) described the following four classes of such sequences in terms of 

uniformity of bed thickness and their lateral continuity: 

 1. “Beds equal or subequal in thickness, laterally uniform in thickness and continuous 

 2. Beds unequal in thickness, laterally uniform and continuous, 

 3. Beds unequal in thickness, laterally variable in thickness but still continuous 

 4. Beds unequal in thickness, laterally variable and discontinuous”. 

 Excluding the rarely occurring massive bed, most beds are characterized by their internal 

structures and their orientation. The most common internal structure within beds is laminations. 

These interlaminations, formed by mineralogical and textural heterogeneity of components, can 

be repetitive in nature. They often display either a parallelism or non-parallelism to the bounding 

surfaces, forming cross-laminations in the latter case. These laminations, found mostly in fine 

grained sands and silts, show thickness of 0.5 mm to 1.0 mm (Pettijohn, 1984).  

Gradational changes within a bedded sequence result in graded bedding as seen in Bouma cycle 

of turbidites. 
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Appendix 3 (continued) 
 

Figure (from Collinson and Thompson, 1989) below shows different layer patterns encountered 

in sedimentary environments.  

 

 
 

  

Beds and laminations in different sedimentary environments 

  

 Layer thickness is largely a function of the grain size, which in turn, is controlled by the 

nature of the depositional processes responsible for the formation of layered sequences. Hence it 

is expected that the pattern of layers deposited by different processes will exhibit some 

uniqueness depending on the depositional settings. An overview of the mode of occurrence of 

sedimentary layers is given below. 
 

Aeolian deposits: 

 Sand dunes of aeolian origin are often internally characterized by sets of cross-beds. 

These cross-beds can be of several types e.g. tabular-planar, wedge-planar, and convex upwards, 

depending on their geometry and orientation. Associated with the beddings are small scale (cm  
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scale) internal stratifications which, in many cases, are defined by the presence of heavy minerals. 

Bounding surfaces, forests, bottomsets, onlap and overlap features in aeolian sand dunes have 

been well documented with ground penetrating radar. 

 

Fluvial deposits: 

 Cross-bedding and laminations are the dominant internal structures in fluvially deposited 

sandstones. Sandstone units can extend vertically for meters forming successive sequences of 

thick beds.  

 Parallel laminations, defined by the grain diameter, occurring parallel to flat bed surfaces 

also occur in both aqueous and aeolian sand deposits. Fine laminations in shale with thicknesses 

in the range of 0.5mm to 1mm occur as alternations of 1) coarse and fine grains e.g. silt and clay, 

2) light and dark of organic layers, 3) calcium carbonate and silt (Pettijohn, 1984).  

  

Glacio-lacustrine deposits:  

 The most significant layered sequence of glacio-lacustrine deposits is that of varves.  

Formed on glacial lake bottoms, varves show a typical couplet structure and can attribute to 

extensive laminated sequences when deposited for a long duration of time. These cyclic layers, 

representing seasonal changes, show very consistent layer configuration, the individual layer 

thicknesses varying from mm scale in most instances to cm scale and forming parallel 

laminations. 

 

Coastal deposits: 

 Dunes and ripple marks are the primary sedimentary structures in coastal environments. 

Coastal sand dunes, like aeolian sand dunes, also show internal cross-stratification. Fine-scale 

layering is observed in beach laminations formed by alternating laminae of light (quartz and 

feldspar) and dark minerals (heavy minerals). Best seen in cross-sections, beach laminations are 1 

to 20mm thick (Komar, 1976) and may extend laterally upto 25m (Thompson, 1937). 
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Appendix 3 (continued) 

 

Volcaniclastic deposits: 

 Among the pyroclastic/volcaniclastic deposits, accumulation in layered sequence takes 

place in case of ash falls and base surges. Ash falls, with well-defined bedding, show a decreasing 

trend of bed thickness away from its source. Base-surge deposits show internal laminations and 

cross-laminations. 

 

Statistical analysis of layered sedimentary sequence 

 

 Stratigraphic sequences defined by rhythmic or repetitive lithounits is not an infrequent 

occurrence in nature. These units follow a definite pattern of spatial distribution e.g. they may be 

of equivalent thicknesses or may be equally spaced.   A statistical approach is often taken to 

describe this lithostratigraphy.  Mutual dependence of layers in vertical sequences has been 

studied in details by applying Markov chain analysis.  Statistical study of layer thickness has been 

sparse. In recent years varve thickness analysis and time series analysis of cyclic lithounits have 

been carried out.  A Gaussian distribution pattern of layer thickness can  be expected as in the 

histogram below showing frequency of varve layer thickness (mm scale) from Lake Elk (data 

obtained from Eric Oches (personal communication) . 
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Appendix 4 
 

 
 
 
Above core section is equivalent to core WI1 (A). 
 Core descriptions obtained from Eric Wright, (personal communication), Coastal 
Carolina University. 
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WI1 contd.

0

50

100

0-1.79m: DUNE
0-1.16m: light yellowish brown gradational to
light olive brown fine sands; rooted at top and
becoming laminated downward.

0.95-1.04m: thin angled laminae
with hollow burrow (1.02)
1.04-1.18m: low angled thick laminae

1.18-1.79m: light yellowish brown fine sands;
thick planar laminae with heavy beds prominent
at top.

1.39m: horizontal woody root
1.57-1.69m: angled laminae

1.79-1.89: INTERDUNE
1.79-1.87m: greenish gray laminated fine sand
with organic-rich lenses more common at top;
thin (< 1cm) oxidized layer forming sharp
contact at top.

surface sediment
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WI 1 contd. 
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WI1 contd. 
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WI2
Length (m): 2.02m

0

50

100

0-0.34m: dark olive gray very fine sand with common very
fine heavies

0-0.15m: few wiry roots/root pieces
0.15-0.18m: large fleshy roots, smaller roots
0.34-0.40m: light gray fine sand

with common very fine heavies
0.40-1.00m: dark olive gray very fine sand

with common very fine heavies
0.52m: burrow (lens) of different colored sand
0.57-0.75m: contorted bedding
0.63m: sharply angled laminae
0.75-0.85m: prominent curved laminae
0.75-2.02m: laminae (laminations mostly faint)
0.90-0.92m: bed of heavies
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1.00-1.27m fine sands with shell fragments
1.07m whole cocina shell

1.12m bed of fine sands with abundant shell fragments

1.25-1.27m thick bed of sands with abundant shell
fragments

1.27-2.00m sands without shell fragments; distinct bedding (due to
sed size or presence of heavies?)

1.38m burrow filled with muddy sands

Beds
1.27-1.48m

1.48-1.52m

1.52-1.57m

1.57-1.62m

1.62-1.63m
1.63-1.68m

1.68-1.69m
1.69-1.72m
1.72-1.74m
1.74-1.79m
1.79-1.84m
1.84-1.87m
1.87-1.90m
1.90-1.92m
1.92-1.94m
1.94-1.96m
1.96-2.00m
1.98m Borrow
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Appendix 4 (continued) 
 
 

2.00-2.41m fine dark sands lots of heavies throughout
no shells or shell fragments
(distorted bedding or burrows)

2.39-2.41m roots and filler from the surface
(if needed the core catcher seds are in a plastic bag marked
0208 wi 19, in the warehouse)  
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Appendix 4 (continued) 
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Appendix 4 (continued) 
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Reflection profile at site WI 2 at 200MHz 

 
Reflection profile at site WI2 (August, 2003) 
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Appendix 4 (continued) 

 
 
 

 
 

Beach lamination in dune outcrop at Waites Island. 
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Reflection profile of dune outcrop in Waites Island 
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Appendix 4 (continued) 

 
 

 
 
 
Interference patterns observed in reflection profile over a heavy mineral enriched trench, 
in the beach in Jekyll Island, Georgia 
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