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Relatively few experiments have measured the time course of free recall from episodic or se-
mantic memory . Of those that have, most report that cumulative recall is a negatively acceler-
ated exponential (or hyperbolic) function that is characterized by two properties : asymptotic re-
call and rate of approach to asymptote . The most common measure of free recall performance
(viz., the number of items recalled) provides a reasonably good estimate of asymptotic recall if
a relatively long recall period is used (which is rare), but the effect of experimental manipula-
tions onthe rate of approach to asymptote cannot be determined without timing when recall re-
sponses occur. The research reviewed herein suggests that the rate ofapproach to asymptote may
offer an estimate of the breadth of search through long-term memory . The search in question,
unlike most oftheme investigated in the memory literature, is unique in that it requires minutes
rather than milliseconds to complete .

When subjects attempt to generate items froma seman-
tic category or to recall a recently presented listofwords,
they do not complete the task in an instant . Instead, cheer
performance is almost invariably characterized by inter-
mittent successes occurring over an extended period of
time . In spite of this interesting fact, memory researchers
have exhibited an overwhelming preference for record-
ing which (or how many) items are recalled during some
brief period of tune, regardless ofthe speed with which
those items have been retrieved. Does the time course of
free recall offer any useful information about the nature
ofretrieval? Because this subject is an old one that com-
mands little attention today, one might assume that the
answer is no. However, a review ofthe extant literature,
limited as it is, suggests otherwise .

Exactly what can be learned that is not already known
by studying the dynamics offree recall? First, the studies
that have tracked the time course of recall usually reveal
that subjects continue to make progress far beyond the
1- or 2-min recall period typically provided . Indeed,
Roediger and Thorpe (1978)--to take one example that
will be considered in detail later-reported that recall on
an episodic memory task continued to increase more than
20 min into the recall period . Moreover, a clear differ-
ence in the level of recall between two conditions (easily
named pictures vs . words) became evident only after sev-
eral minutes had elapsed. Had these authors used the stan-
dard brief recall period, they might gave mistakenly con-
cluded that the two conditions produced equal levels of
performance . Howoften are incorrect conclusionsarrived
at because the recall period is too brief? The answer is

unknown because most researchers simply ignore the
potential problem.

Second, most ofthe literature reviewed below suggests
that the tame course of free recall, like reaction time in
the Sternberg memory scanning procedure, reflects the
dimensions ofsearch through memory . Unlike most mem-
ory search processes that take place on the order ofmilli-
seconds, however, the search of interest here requires
minutes to complete . What variables affect die time course
ofthis search process? Eventhe most experienced mem-
ory researcher may have difficulty answering this ques-
tion because the sporadic research concerned withthe tim-
ing of free recall has never been systematically analyzed .

BACKGROUND

Bousfield and Sedgewick (1944) initiated modern in-
quiry into this subject by measuring the dynamics of
retrieval from semantic memory . In their experiment, sub-
jects were asked to write down the names of as many items
as possible from specific categories (e .g., birds, U.S . ci-
ties, etc.) for 18 min. In addition, every 2 min, the sub-
jects were instructed to draw a line after the most recently
recoiled item . When the cumulative number of items re-
called was plotted as a function oftime, the resulting data
revealed that recall did not progress ¬n linear fashion bit
instead slowed continuously, with the maximum rate of
recall occurring at the beginning of the recall period .

Bousfield and Sedgewick (1944) observed fat their cu-
mulative recall functions were reasonably well described
by an exponential of the form

F(t) = N(1 - e-"), (1)

Correspondence concerning this article should be seta wJohn Wixoed,
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where P(t) represents the cumulative number of items re-
called by Mme t, Nrepresents the number of items recalled
given unlimited tune (2 .e ., asymptotic recall), and X rep-
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resents the rate ofapproach to that asymptote. Note that
Z1X is equal to the average latency to recall associated
with theNitems that are ultimately recalled. Thus, a rapid
rate of approach to asymptote (i .e ., a large X) implies a
short average latency to retrieval, and vice versa. The ex-
panential's main rival for describing cumulative recall is
the hyperbola, which can be written as

F(r) = IVZAr 1 (1 + NAr), (2)

where Nacid X have basically the same interpretation as
the corresponding parameters in the exponential (Bous-
field, Sedgewick, & Cohen, 1954).

Figure 1 presents cumulative free recall data taken from
one of the conditions (pleasant activities) reported by
Bousfield and Sedgewick (1944), along with the best-
fitting exponential . This figure, which shows the cumula-
tive number of items recalled up to each point in the re-
call period, clearly illustrates the two properties that char-
acterize the time course of free stall: asymptotic recall
(indicated by the dashed line) and rate of approach to
asymptote, which in this case is rather gradual. Experi-
mental manipulations that affect one property of recall
may or may not affect the other for reasons that turn out
to be theoretically interesting .

Bousfield and Sedgewick (1444) and McGill (1963)
noted that the form ofEquation 1 is consistent with a ran-
dom search model according to which individual items
are randomly sampled from a search set, evaluated, and
then replaced . The gradual sawing of recall, according
to this account, arises because of the resampling of al-
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F,m,rP 1. A cumulative free recall latency distribution taken from
Bousfield and 5edgewick (1944) . The data represent the cumula-
tive number of pieasaet activities generated by 18 subjects as afunc-
tion of time . The solid curve represents the best-fitting exponential
(Equation 1), and the dished line indicates the asymptotic level of
recall .

ready retrieved items. That is, early in the recall period,
almost every draw from the search set yields a new item
{which is overtly recalled} . Later, after most ofthe items
have been recalled, almost every draw retrieves an already
sampled item (which is not overtly recalled) . Various
modifications of this model will yield hyperbolic, instead
ofexponential, recall . Bousfieldet al . (1954), for exam-
ple, noted that if recalling an item makes that item more
likely to be sampled again (and correspondingly decreases
the likelihood that not-yet-retrieved items are sampled),
they a hyperbolic growth curve might be expected (cf .
Indow & Togano, 1970).
Most ofthe initial research into the dynamics of recall

followed the lead of Bousfield and 5edgewick by study-
ing retrieval from semantic memory, with studies involv-
ing episodic memory generally appearing somewhat later .
In roughly chronological order, the major issues addressed
in this literature are (1) floe relationship between the two
parameters of the exponential (or hyperbolic) cumulative
recall function, (2) the temporal dynamics of clustering
in recall, (3) the role of cumulative recall in elucidating
part-list cuing effects and hypermnesia, and (4) mathe-
matical elabocations ofthe basic sampling-with-replacement
search model.

THE APPARENT ItELAT'ION$AIP
BETWEENN and X

Semantic Memory
One ofthe most interesting facts about retrieval from

semantic memory concerns the relationship between N
(asymptotic recall) and a (rate ofapproach to asymptote) .
Johnson, Johnson, anti Mark (1951), who first observed
that the two parameters were related, asked subjects to
generate as many items as possible from specific seman-
tic categories (cities first, then animals) . When Equation I
was fit to the data from individual subjects, these authors
found that Nanda were strongly negatively correlated .
Forcities, thecorrelation was -.78; for animals, the cor-
responding value was -- .48. 'i'ttvs, subjects who were able
to name a larger number ofcities approached their higher
asymptotes more slowly than did subjects who could name
fewer cities .
Kaplan, Carvellas, and Meday (1969) showed that the

inverse correlation betweenN and X did not arise from
individual differences between subjects because it also oc-
curs within individuals exposed to different conditions .
In their experiment, each subject was asked to generate
as many 4-letter words as possible from a pool of letters
ranging from 5 to 10 across conditions . The number of
words produced as a function of time within each condi-
tion was well described by Equation 1 . Obviously, Nin-
creased as the pool of fetters to draw from increased. Less
obviously, a decreased under the same conditions . Thus,
when subjects could produce only a few 4-letter words
(e .g ., from 5-letter sets), performance approached asymp-
tote rapidly . When those same subjects could produce
many 4-letter words (e .g ., from 10-letter sets), perfor-
mance approached asymptotic recall more slowly .
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Hemmann and Chaffin (1976) investigated whether or
not the same result would hold true across taxonomic cat-
egories . That is, do subjects generate items at a propor-
tionately sower rate from large semantic categories than
from smaller ones? To address this question, subjects were
asked to generate items from 12 different semantic cate-
gories . When Equation z was fit to the group data for each
category, the obtained correlation between N and A was
-.51 nn one experiment and -.75 in another. Herrmann
and Murray (1479) replicated this result using large cat-
egories (e.g ., bodies ofwater) versus smaller nested cat-
egories (e .g ., lakes) . Figure 2 shows the average data
from this experiment along with the best-fitting exponen-
tial . For both categories, performance was clearly still
increasing by the end ofthe recall period (which is often
true of episodic memory experiments as well). The esti-
mated values of N and X based on a least squares fit of
Equation 1 to the large category datawere 22.4 and 0.52,
respectively, whereas the corresponding values for the
small categories were 15.0 and 0.84 .
Whyshould NandXbe negatively correlated? One rela-

tively uninteresting, but nevertheless plausible, explana-
tion is that subjects who could generate more items be-
gan retrieving those items at a faster rate than they could
be written down or spoken aloud. If so, then rapidly re-
called words would begin to "queue up" in short-term
store, thereby delaying their overt retrieval. The effect
would be to artifactually reduce the estimated value of
X. Johnson et al . (1951), who first discovered the rela-
tionship in question, considered this to be an unlikely pos-
sibility because the fastest recall rates rarely exceeded 20
words per minute (weld below the maximsrate) and re-
call totals were measured at 3-min intervals. By the time 1

20

or 2 ruin had elapsed, recall rates were usually quite low.
Thus, it seems unlikely that any words were still queued
after the first interval . Instead, they argued that tie lim-
iting factor was apparently cognitive in nature.
The inverse correlation betweenNand A implies a direct

correlation between Nand recall latency (i .e., as more
items are retrieved, average recall latency increases) . Con-
sidered in that light, almost any retrieval scheme would
predict the obtained result . Consider, for example, a very
simple model that assumes that items in semantic mem-
ory are scanned in linear fashion (as in the Siernberg short-
term memory task). If the scan rate were one item per
second and the category contained only one item (i.e.,
N = 1), then average recall latency would be 1 sec. If
the category contained two items (i .e ., N = 2), then aver-
age recall latency would increase to 1 .5 sec because the
first item would be recalled after 1 sec and the second
after2 sec. The larger the search set, the longer the aver-
age latency to recall .
The linear scan model, while consistent with the ob-

served relationship betweenNand recall latency, seems
inconsistent with the other major empirical finding from
this literature-namely, the exponential formofretrieval.
A linear scan model anticipates a linear approach to
asymptote rather than the negatively accelerated approach
typically observed . As indicated earlier, an alternative
model long known to 6e consistent with exponential
retrieval, aid which also predicts the inverse correlation
between Nand X, assumesrandom sampling with replace-
ment from a finite search set . According to this account,
tie boundaries ofthe search are established by a retrieval
cue (e .g ., "generate cities"), and items are overly re-
called the first time they are sampled.
McGiII (1963) showed that this sampling scheme

predicts exponential retrieval and, more to the point, that
it necessarily predicts the following inverse relationship
between search set size and

a = rIS, (3)
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Figure 2. Cumulative free recall functions forlarge and small se-
mantic categories from Herrmann and Murray (1979) . The solid
curves represent the best-fithnq exponential functions (Equation 1) .
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where r is the rate at which items are sampled from a
search set of size S. Because mean recall latency (r) is
equal to I/ X, the random search model also implies that
z = Slr. In other words, assuming a constant rate ofsam-
pling, mean latency grows linearly with the size of the
search set (a point that was also true of the linear scan
model discussed move) . A similar relationship between
Xand5exists for the simplest hyperbolic sampling-with-
replacement model discussed earlier-namely, X = HP
(cf. Bousfield et al ., 1954). Table 1 presents a reference
list of definitions for the mathematical symbols used
throughout this article . Note that A, z, andNare empiri-
cal estimates, whereas r and S represent theoretical
quantities .

In all of the studies described above, asymptotic retail
(i .e ., N) was inversely related to rate of approach to
asymptote (X), but the random search model suggests that,
in theory, it is actually search set size (i .e ., S) that is in-
versely related to a (cf. Equation 3) . According to this
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Table 1
Deflaitions of Mathematical Symbols

Symbol Definition
Bate of Approach to Asymptote

r Mean Recall Latency (11X)
N Asymptotic Number of Items Recalled
r Rate of Sampling from Search Set*
5 Number of Representations m Search Set"`

*Theoretical measures.

model, the reason why N and X are inversely related is
because, usually, N and S are equivalent (or, at least,
directly related) . Consider, for example, two semantic cat-
egories, female names and signs ofthe zodiac . The former
category is presumably associated with a vastly larger
search set than the latter (i .e ., there are many more fe-
male names to sample and replace than there are signs
of the zodiac) . As a result, X for female names should
be small. In addition, many more female names will be
overtly generated than signs of the zodiac (i .e ., N wild
be larger for female names as well) . Thus, a larger Nin
this case implies a larger S.

If conditions are arranged such that N no longer pro-
vides a reasonable estimate of S, then, according to the
random search model, the usual inverse correlation be-
tweenNand X should disappear . $y contrast, any theory
that assumes that N and a are intrinsically inversely re-
lated (e.g., because of limitations on motor output) would
predict the usual inverse relationship regardless ofwhether
or not N is equal to S . Meday, Handley, and Kaplan
(1971) performed an experiment relevant to this issue .
Subjects were asked to generate items from particular cat-
egories (e.g ., Presidents) that were further subcategorized
into sets of various sizes . In one condition, for example,
subjects were instructed to generate the names of Presi-
dents that contained the letter y (N = 5) . In other condi-
tions, the names had to contain the letter s (N = 11) or
the letter e (N = 15) . Presumably, subjects in each con-
dition were forced to silently generate the names of 32
Presidents while overtly reporting only those that satis-
fied the specific letter requirement . Thus, this procedure
should hold the overall size of the mental search set con-
stant (S = 32) while varying the number of target items
in that search set . Nevertheless, the tune course of
retrieval should still be exponential and (because of Equa-
tion 3) X should remain constant in spite of differences
in N. On the other hand, ifN and a were inversely corre-
lated in previous experiments because of the extra motor
time required to produce items when N is large, then this
experiment, like its predecessors, should produce the usual
inverse correlation . In accordance with the seared model,
Meday et al . (1971) found that X remained constant in
spite of large changes in N.
This result is instructive when considered in relation

to those reported by Herrmann and Murray (1979) . When
subjects were asked to generate items from nested seman-
tic categories, the usual inverse relation between Nand
Xwas observed . This implies that when asked to genet-

ate lakes, for example, subjects do riot create a search
set comprised of "bodies ofwater" and select lakes from
that set but instead create a more focused search set (as
one would expect) . That is, presumably, lakes are stored
as lakes . Onthe otter hand, when asked to generate nested
items that contain a particular letter (such as Presidents'
names containing y), the usual inverse relationship is not
observed, which implies only one search set regardless
of the letter chosen, Presumably, Presidents' names are
not stored according to the individual letters that com-
prise them .
The results reported by Metlay et al . (1971) suggest

that, as required by Equation 3, X is inversely related to
S, notN. For the kind ofexperiment they performed, this
result might seem to be trivially true . That is, the only
reason Nand S were not equal is because the instructions
induced a conscious editing strategy that simply excluded
certain covertly retrieved items from being overtly re-
called . However, the random search model does not dis-
tinguish between dissociations of N and S accomplished
through conscious editing (in which case, the result may
seem trivial) or preconscious editing . In studies ofseman-
tic memory, it may not be possible to separate N from
S without inducing conscious editing strategies, but the
same does not appear to be true of studies involving epi-
sodic memory .

Episodic Memory
The relationship between asymptotic recall (N) and rate

of approach to asymptote (a) in studies ofepisodic mem-
ory is actually quite variable because, theoretically, tie
relationship between N and the size of the search set (S)
is variable . For example, Wixted and Rohrer (1993) ex-
posed subjects to lists ofthree items, followed by a dis-
tractor task, followed by a 20-sec recall period during
which verbal response latencies were timed to the nearest
second . Blacks of three trials involved words from the
same semantic category . The results of many previous
studies suggest that asymptotic performance should
decline with the buildup of proactive interference (i .e .,
across the three trials within a block), and that was in-
deed the obtained result. The values of N on Trials 1, 2,
and 3 were 2.62, 2.30, and 1 .47, respectively . Because
N decreases with the buildup of proactive interference
(PI), and because N and a are usually inversely corre-
lated, one might expect A to increase across trials . In con-
trast to this prediction, the results showed a dramatic de-
crease in X with the buildup of PI (0.35, 0.20, and 0 . 115,
for Trials 1, 2, and 3, respectively) . In other words,
asymptotic recall (N) and rate of approach to asymptote
(X) were positively correlated, which is exactly the op-
posite of the standard finding .
This result is actually predicted by Equation 3, which

relates X to the size of the search set rather to value of
the asymptote . Over the course of three trials involving
words from the same semantic category, it seems reason-
able to assume that the search set increases (Baddeley,
199(} ; Crowder, 1976; Watkins & Watkins, 1975) . For
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example, consider a block of three trials involving words
from the category "sports." After the first trial, the search
set established by the retrieval cue sports presumably in-
cludes the three words on the list . After the second trial,
the same retrieval cue would presumably produce a search
set that includes words from both the first and the second
list . An even larger search set would be established after
the third list of sports . Thus, if the buildup of PI is as-
sociated with a growing search set, as most theories of
PI suggest, then Equation 3 requires that X decrease across
trials (which it does) . The reason why N and X are not
inversely correlated in this case is that N does not pro-
vide an index of search set size (which was also true of
the study by Meday et al ., 1971) .

In a sense, the PI experiment described above can be
construed as a list length experiment (Watkins & Wat-
kins, 1975). That is, although the nominal list length was
always three items, the effective list length increased with
the buildup of PI . This cue-overload interpretation im-
plies that X should decrease as a function of increasing
list length in episodic memory experiments . In addition,
because longer lists will also be associated with higher
asymptotic recall, the usual inverse association between
Nand X should hold . Roediger and Tulving (1979) pre-
sented subjects with lists of 30 or 60 words, followed by
a 10-min recall period . Although amathematical analy-
sis of the obtained cumulative recall curves was not per-
formed, their data nevertheless revealed that performance
in the 60-word condition approached the higher asymp-
tote at a slower rate than did performance in the 30-word
condition. Fitting Equation 1 to these data (estimated from
Roediger & Tulving's Figure 4) revealed that Nincreased
from 18.2 to 31.1 and X decreased from 1 .06 to 0.55 as
list length increased from 30 to 60 words. Thus, the ex-
pected inverse relation betweenNand X was obtained be-
cause, theoretically, NandS were directly related in this
experiment .
Some additional experiments recently performed in our

laboratory (Rohrer&Wixted, in press), including a repli-
cation ofthe above result, are also most easily interpreted
in terms of a model that assumes that the rate ofapproach
to asymptote is inversely related to the size of the search
set (and is not intrinsically related to the value of the
asymptote) . Subjects in one experiment were exposed to
lists of three, six, or nine items (with each word presented
for 2 sec) followed by a 20-sec distractor task, followed
by a free recall test . Thus, this experiment is basically
a three-level replication of Roediger and Tulving's (1979)
experiment, although the lists were much shorter . The ob-
tained results were as expected : whereas the values of N
were 2 .55, 3.96, and 4.68 for lists of three, six, and nine
items, respectively, the corresponding values of X were
0.44, 0.21, and 0 .16. Note that these values of X are quite
similar to those obtained from the PI experiment discussed
above (namely, .35, .20, and .15 for Trials 1, 2, and 3,
respectively) in which the effective list length was assumed
to increase from three to six to nine items across trials,
even though the nominal list length was always three
items .

Subjects in a second experiment were exposed to lists
of six items for varying lengths of study time . The words
were presented at a rate of one every 4 sec (slow), one
every 2 sec (medium), or one every 1 sec (fast) . Obvi-
ously, asymptotic recall decreased as the rate of presen-
tation increased. For the slow, medium, and fast condi-
tions, the obtained values of Nwere 4.56, 3.60, and 3.00
words, respectively, while the corresponding values of
X were 020, 0.20, and 0.19. Stated differently, rate of
approach to asymptote remained constant as the percent-
age of items recalled decreased from 76% to 50% . In
terms of the random search model, this result implies that
duration of study does not affect the size of the search
set (cf. Equation 3) .
Why should the search set remain constant andNchange

as the duration of study increases? Most theories of mem-
ory agree that the presentation of a word will create some
representation (i .e ., a trace to be sampled) that may or
may not be sufficiently complete to reconstruct the origi-
nal item . Using the terminology of Raaijmakers and
Shiffrin (1980), sampling a representation may or may
not lead to the recovery of the list item that created it .
Such an idea seems reasonable because subjects can often
provide details about items they cannot remember (e.g .,
what the first letter is, what the word rhymes with, etc .) .
Thus, in the study just described, the presentation of six
words might create six representations to be searched (i .e .,
S = 6), perhaps only three of which are sufficiently in-
tact to recover the corresponding list item when sampled
(i .e ., N = 3) . Alonger duration of study presumably cre-
ates a more intact memory trace, but not necessarily a
greater number of memory traces . By contrast, present-
ing more items on a list will increase the total number
of representations as well as the number of recoverable
items. Thus, in that case, Nshould increase because the
absolute number of intact traces will increase and X should
decrease because the total search set (composed of both
intact and degraded traces) increases as well .

Figures 3 and 4 present graphical illustrations of this
model for list length and rate ofpresentation, respectively .
The figures show hypothetical search sets for the three
conditions of each experiment . An Xrepresents an intact
trace (i .e ., one that will recover a list item when sam-
pled), whereas an O represents a degraded trace (i .e ., one
that will not recover a list item when sampled) . Also
shown are the numerical values of S (search set size), N
(number of recoverable items in the search set, which
equals asymptotic recall), andp (the hypothetical proba-
bility that a list item is encoded in recoverable form). Note
the value ofp is simply the asymptotic probability of re-
call (i .e ., N/S), which is known to decrease with list length
and increase with duration of study . Theoretically, the
value of X should be inversely related to the values in the
S column, whereas asymptotic recall should be equal to
the values in the Ncolumn . This, of course, reflects the
obtained pattern of results .
A similar conceptualization applies to the PI experiment

discussed earlier. Indeed, the PI model is identical to the
list length illustration in Figure 3 (see Watkins & Wat-
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Fegure 3. Hypothetical search set established by lists of three, six,
and nine rtes (top, middle, and bottom, respectively). x represents
an intact representation, whereas O represents a degraded reprc-
sentation.S = total items in search set, N = number of intact items
id search set, P = Probability that a list item is encoded in intact
form.

bins, 1975), except that asymptotic recall decreases as the
search set increases. Note that the models in Figures 3
and 4 (and the corresponding mode[ for PI) predict a nega-
tive correlation, a zero correlation, and a positive corre-
lation between X and N, respectively, although X is in-
versely related to the theoretical value of S in all cases.

Not ail of the episodic memory data fit so easily into
this interpretive scheme . Roediger and Tulving (1979),
in some further experiments, reported one finding that
fits with the previous analysis and one that does not . More
specifically, they exposed subjects to lists of 64 words
(S words from each of S categories) and asked them to
recall only those words not beginning with four particu-
lar letters . This instruction, which eliminated 32 words
on the list, would not be expected to alter the size of the
search set because, presumably, subjects did not encode
the list items in terms ofeach word's first letter. Instead,
subjects would be expected to search as they ordinarily
would and simply ignore retrieved words beginning with
the forbidden letters . Thus, relative to a control group
instructedto recall x1164 words, the exclusion manipula-
tion should decrease asymptotic recall by about 50%a with-
out affecting the rate of approach to the asymptote . This
was exactly what Rcediger and Tuiving found. Equation 1
was fit to the relevant data estimated from their Figure I,
and the results showed that whereas the exclusion manip-

ulation decreased N from 21 .0 to 9.I , X was equal to 0.54
in both cases . Thus, as with Metlay et al . (1971), Nand
a were not inversely correlated because, theoretically at
least, Ndid not provide an index of search set size in this
case .
A second condition studied by Roediger and Tulving

(1979), however, produced a far more surprising result
that is less easily reconciled with the random search
model. Using the same procedure described above (i.e .,
lists of 64 words from eight different categories), they
asked subjects to avoid recalling items from four cate-
gories on the list and to instead recall items from the re-
maining four categories (the names ofwhich were not pro-
vided) . Presumably, the list items, which were presented
inblocked fashion and introduced by the category name,
were encoded wish respect to their semantic category .
Thus, perhaps subjects would be able to avoid wasting
time searching the excluded categories and effectively
halve the size of floe search set (i .e ., N should decrease
by SO% and X should double). Instead, the value of X
changed only slightly (from 0.54 to 0.65) on the basis of
the data estimated from their Figure 1 . As noted by
Rcerliger and Tulving, this curious result seems to sug-
gest one of two possibilities: (1) for some reason, sub-
jects performed an obligatory search through the excluded
categories (or at least had difficulty not thinking about
those category names), or (2) the very idea that subjects

Rate
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Figure 4. Hypothetical search sets established by six-item lists pre-
sented at fast, medium, and slow rates (top, middle, and bottom,
respectively) . X represents an intact representation, whereas Orep-
resents a degraded representation. S = total items in march set, N =
number o[ intact itemsin search set,p = probability that a list item
is encoded inn intact form .
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are searching through mental search sets is mistaken . As
of yet, the issue has not been further pursued.
One way to shed some light on this interesting phenom-

enon might be to use an uninhibited recall procedure in-
troduced by Sousfield and Rosner (1970) and used on oc-
casion by others (e-g ., Hogan, 1975 ; Roediger & Payne,
1985) . Subjects in these experiments were asked to ver-
balize any items that came to mind during the recall pe-
riod even ifthey had been retrieved before . As might be
expected, the same words were retrieved on multiple oc-
casions . The use of this technique in conjunction with the
exclusion procedure used by Roediger and Tulving (I979)
could help indicate whether or not subjects actually spend
time maladaptively retrieving items from (or simply think-
ing about) the excluded categories .
With the possible exception of this last result, the ran-

dom search model provides a simple explanation for both
the exponential force of retrieval and the inverse relation-
ship between search set seize and X. However, the model
seems to conflict with other welt-}mown properties of
retrieval. In particular, the generation of items from se-
mantic memory is clearly not completely random beet in-
stead involves obvious clustering of related items. 5ub-
jects asked to name countries, for example, might begin
by naming North American countries, followed by South
American countries, followed by European countries, and
so on . Does such evidence render the random search
model invalid? Opinions on this point differ, but the po-
sition taken by Meday et al . (1971) probably reflects the
modal view :

The random search model is a simplified description of ver-
bal recall . It assumes that every item in the search set has
an equal chance of being selected for examination at any
moment, and that the time spent making a response, i .e .,
motor time, is negligible . Neither of these assumptions is
entirely true . [t has been shown that the response probabil-
ities of the names m a category are unequal and that the
probabilities of successive responses in free recall of a
memorized set ofwords are not independent . There is evi-
dence for both nonrandomness and motor time in the present
experiment, although these factors had little effect on the
exponential distribution of recall times and on the depen-
dence of relative response rate upon category size .
(pp. 217-218)

Thus, according to this view, the evident nanrandom-
ness of recall excludes sampling-with-replacement as a
complete theory of memory, which has been obvious for
many years (cf. Sousfield & Sedgewick, 1944) . However,
this is not to say that the simpler theory is fundamentally
wrong (i .e ., contemporary theories often assume the sam-
pling and resampling of search set items) or that the in-
terpretation provided by the parameters of the best-fitting
exponential are incorrect, as will be seen in the next sec-
tion . The clustering of recalled items, which is basically
relegated to error variance in the analyses discussed
above, has actually been the focus of several studies con-
cerned with the dynamics of retrieval from semantic and
episodic memory . The next section reviews this research

and considers its implications for the basic random search
model in more detail .

CLUSTERING

A long and ongoing line of memory research has been
concerned with the interesting fact that subjects tend to
recall semantically related items together in time (e .g .,
Sousfield, 1953 ; Bousfield, Puff, &Cowan, 1964 ; Deere,
1959 ; Pollio, 1964; Romney, Brewer, & Batchelder,
1993 ; Schwartz & Humphreys, 1973 ; Tulving, 1962).
Mast of this research has been concerned with whether
or not adjacent items in a recall protocol appear together
with a probability that is greater than would be expected
on the basis of chance . A few studies have also inves-
tigated the hypothesis that interresponse times (IRTs)
should be shorter for words within a semantic cluster than
for adjacent words that form the boundary between two
clusters.

Semantic Memory
Pollio (1964) was the first to study the relationship be-

tween semantic clustering and the dynamics of retrieval.
In this experiment, subjects were asked to generate as-
sociations to a stimulus word (e .g ., trouble) . All responses
were tape-recorded, so the experimenter had a verbatim
record of responses as well as an accurate measure of
when those responses occurred . As with retrieval from
natural categories, the time course of recall on this task
was approximated by Equation 1 . The entire collection
of IIiTs (i .e ., the tames between consecutive retrievals)
was divided into quartiles, and response darters were
identified by finding sequences of consecutive responses
in which all of the lRTs fell within the fastest quartile.
For example, if the three IRTs separating the words
problem-fix-broken-merry all fell within the fastest quar-
tile, but the IRTs preceding the word problem and fol-
lowing the word mend did not, then that four-word se-
quence would be identified as a cluster. Nonclusters were
identified by finding sequences of responses in which all
ofthe IRTs fell within the slowest quartile . Further anal-
yses of the words comprising temporal clusters showed
them to be more semantically related than words com-
prising nonclusters . For example, clustered items were
more likely to be recalled together across individuals than
were nonclustered items. Thus, related words not only
appear together in recall protocols, which many previous
studies have found to be true, they also occur as part of
a burst of responding .

Graesser and Mandjer (1978) performed a similar ex-
periment in which subjects were asked to generate items
from natural categories, but they used a different method
for detecting clustering on the basis of temporal proper-
ties . The procedure was fairly involved and will only be
briefly described here . First, a criterion iRT was selected
arbitrarily (e.g ., 3 sec), and potential clusters were iden-
tified by finding sings ofsuccessive responses with TRTs
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less than the critical value. For a given criterion IRT
value, the mean size of all clusters identified in this way
was calculated . This process was repeated for a range of
criterion values, which allowed for a plat ofmean cluster
size versus criterion IRT. As the criterion IRT increased,
mean cluster size increased in a negatively accelerated
fashion up to a point (i .e ., cluster size seemed to level
ofd and then in a positively accelerated fashion from that
point on (i .e ., cluster site began increasing rapidly again) .
The criterion IRT at the point of inflection was selected
as the critical IRT, which was then used to identify clusters
for further analysis .
Their analysis of within-cluster IRTs identified in this

way revealedthree important findings : (1) IRTs increased
as a function ofoutput position within a cluster (e .g ., the
second iRT of a clusterwas longer than the first), (2) IM
decreased as a function of cluster size at a given output
position (e .g ., the first IRT of a six-item cluster was
shorter than that far a three-item cluster), and (3) cluster
size had no effect on IRTs when they were plotted in back-
ward serial order (e .g ., the last IRS' was the same regard-
less ofcluster size). Concerning this last point, Graesser
and Mandler (1978) state, "The critical determinant of
the pattern of IRTs is how many items are left to be emit-
ted from a cluster . When there are n items left to be emit-
ted from a cluster, file IRTs are the same far all cluster
sizes" (p. 98). Although it is not intuitively obvious, these
three findings are actually diagnostic of a constant prob-
ability search process, such as sampling-with-replacement,
at the level of individual clusters .
To see why this is true, first consider the expected IRT

output function assuming random search at the level of
an entire list. That I1.'Ts increase with successive reirieuals
according to the random search model is already estab-
lished by the fact that Equation 1 implies that recall is a
negatively accelerated process . Albert (1968, cited in Vor-
berg & Ulrich, 1987) noted that constant probability
search models predict that IRTs will grow according to
(1a)/(N - i), where i denotes output position (i .e ., IRT,
refers to the time separating the retrieval of the first and
second items, IRT2 refers to the time separating the
retrieval of the second and third items, etc.), and Nrep-
resents the number ofitems eventually retrieved. For the
sampling-with-replacement model, which is one of the
simplest constant probability search models, a in this equa-
tion can be replaced by rlS (Equation 3), such that

IRT. _ ~(NS i),

whereNis now interpreted as the number ofrecoverable
items in the search set (and still also represents asymp-
totic recall) . Murdock and Okada (1970) found that IRS's
in episodic memory experiments do increase in a posi-
tively accelerated fashion as predicted by Equation 4, al-
though they did not provide a rigorous mathematical anal-
ysis of the growth function-
The sampling-with-replacement model underlying

Equation 4 assumes that a single search set is established

by a retrieval cue (e .g ., sports) and that items are ran-
domly sampled from that set . Although this model is use-
ful for addressing certain questions, the studies of cluster-
ing reviewed above suggest that a more accurate model
must assume that nested search sets are established dur-
ing the course of retrieval (e .g ., outdoor sports, indoor
sports, etc.) . The identical random search model can be
applied at the level ofindividual clusters, except that row
5 refers to the size of a nested search set (e .g ., indoor
sports) andNrepresents the number of target items in that
set .

Graesser and Mandler's (1978) three main findings con-
cerning within-cluster 3RTs follow directly from Equa-
tion 4 (applied at the level of nested search sets) if S is
assumed to remain constant and cluster size is assumed
to reflect the number of recoverable targets in a nested
search set (i .e ., N = observed cluster size) . Obviously,
IRTs should increase with output position according to
Equation 4 (Graesser and Mandler's fast point) . Further-
more, for a given search set size, Equation 4 also sug-
gests that IRTs should decrease as cluster size increases
(Point 2 above) . To illustrate why tills is so, consider two
clusters, one of size 3 (N = 3) and the other of size 6
(N = 6) . Assume, for the sake of illustration, that both
clusters were drawn from hypothetical search sets of 9
total representations (S = 9), If one target item from each
search set hay already been retrieved, then the probabil-
ity ofsuccessfully selecting a new target item on the next
draw is 219 in the first case and 519 in the second case .
Thus, the time required to find a second target item will
be significantly shorter in the latter case . Finally, Equa-
tion 4 predicts that IR1's will be the same regardless of
cluster size when they are plotted in backward sealorder
(Point 3 above) . Continuing with the previous example,
if all but the last target item has been retrieved (i .e ., 2
have been retrievedin the first case, 5 in the second), then
the probability of selecting the last target item on the next
draw is 119 in bath cases (because, in both cases, 1 target
item remains to be found among 9 total items in the hy-
pothetical search sets) . This, the time between the second-
to-last and last retrieval will 6e the same regardless of
duster size . Referring to Equation 4, for the last IRT the
denominator is always equal to 1 regardless of the value
of N (thus, the size of the last IRT will be independent
of the number of targets in the cluster-level search set) .
It should be noted that this analysis depends on the as-
sumption that S (rested search set size) is the same for
each cluster, which means that some items in a nested
search set are not recoverable .
To this point, the random search model has been ap-

plied at the level of lists as well as the level of clusters .
Combining these two ideas suggests a hierarchical
sampling-with-replacement scheme_ Semantic fields {or
subcategory names} comprise one level of search, and the
items within each field comprise a nested level ofsearch .
According to this model, the time between successive sub
category retrievals should increase with output position
(i .e., the time between the first and second clusters should
be less that the time between the second and third clus-
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ters), as should the time between successive retrievals
within a subcategory (i .e ., the time between the first and
second items within a cluster should be less than the time
between the second and third items of a cluster) . The ex-
pected increase in IRTs at both levels occurs for the same
reason-namely, as more items are recalled, draws from
the search set are increasingly likely to retrieve already-
sampled items .
Several two-stage search models roughly similar to that

described above have been proposed . Gruenewald and
Lockhead (1980), for example, proposed such a hierar-
chical search model, but they argued against the sampling-
with-replacement scheme for two reasons . First, their cu-
mulative recall curves were more accurately described by
the hyperbola than by the exponential (cf. Fitzgerald,
1983) . Second, in contrast to the results reported by
Graesser and Mandler (1978) and replicated by Rubin and
Olsen (1980), the IRTs within identified clusters did not
seem to increase with output position . The differences on
this point may reflect differences in the way in which
clusters were identified . Gruenewald and Lockhead (1980)
identified clusters by finding sequences of words with
IRTs that were faster than expected on the basis of the
best-fitting hyperbola . Nevertheless, Gruenewald and
Lockhead did report that the time between successive
clusters increased with output position as predicted by a
two-stage sampling-with-replacement model .
Henmann and Pearle (1981) challenged the position

taken by Gruenewald and Lockheed (1980) on the grounds
that the expected form of the retrieval curves according
to a sampling-with-replacement model depends on one's
assumptions about how a previously retrieved cluster is
searched . Hemnannand Pearle showed that the expected
cumulative recall function is exponential when the time
taken to review a previously retrieved cluster is roughly
the same as that required to review a new cluster . Amore
hyperbolic function is expected when the time taken to
review a previously encountered cluster is less than that
required to review a new cluster . An important feature
of the account offered by Herrmann and Pearle is that the
interpretation of X obtained from fitting Equation 1 (or
Equation 2) to cumulative recall data does not differ from
that provided by the simpler noncluster version ofthe ran-
dom search model. That is, X is still inversely related to
overall search set size (i .e ., number ofnested search sets
times the number of items per nested search set) even
though the individually recalled items are organized into
clusters . Thus, it should not be assumed that the mere
presence of clustering necessarily disqualifies Equation 1
or the theoretical interpretation of its free parameters .
For mathematical simplicity, Herrmann and Pearle's

(1981) analysis assumed sampling-with-replacement at the
level of clusters, but not at the level of individual items
within clusters . Instead, within-cluster retrieval was as-
sumed to proceed in linear fashion. This is probably a
reasonable approximation because within-cluster IRTs are
generally much faster than between-cluster IRTs, in part
because subjects may switch to a new nested search be-

fore IRTs become long . Nevertheless, the results of
Graesser and Mandler (1978) seem to imply that within-
cluster search might be better modeled by an account that
assumes sampling-with-replacement at that level as well .
Herrmann and Pearle commented that the manner in
which such a scheme might be formally incorporated into
their mathematical analysis is unclear. Presumably, such
a modification would not dramatically alter the interpre-
tation of X offered by the model, but a definitive state-
ment on this point will not be possible unless the mathe-
matical details are eventually worked out.

Episodic Memory
As in the case of semantic memory, retrieval from epi-

sodic memory often involves clear evidence of cluster-
ing (e .g ., Tulving, 1962). Once again, Pollio and his col-
leagues were the first to examine the temporal properties
of these clusters in detail (Pollio, Kasschau, & DeNise,
1968; Pollio, Richards, & Lucas, 1969). Pollio et al .
(1968) asked subjects to recall lists of 22 related words .
One list, for example, consisted of items related to the
word music. A 2-min recall period followed list presen-
tation during which recall responses were tape recorded
(to allow for accurate timing). Clusters were identified
on the basis oftemporal transition points . Anytime an IRT
was less than one fifth of the preceding IRT or greater
than five times the preceding IRT, the beginning or end
of a cluster was marked, respectively . An analysis of
clusters identified in this way showed them to be more
semantically related (e .g ., they were more likely to be
recalled together across subjects) than words appearing
in separate clusters . Thus, as in the case ofsemantic mem-
ory, related items are retrieved as part of a burst of re-
sponding .

Pollio et al . (1969) used a procedure that made cluster-
ing much more likely and the identification of response
clusters much easier . Subjects were asked to memorize
and then recall lists of 25 words composed of 5 words
from each of 5 natural categories (e .g ., countries, fruits,
sports, etc.) . If a subject recalled the words baseball, foot-
ball, basketball, Canada, and Mexico (in that order), two
response clusters would be plainly evident (one of size 3,
the other of size 2) . As before, responses were tape-
recorded in order to facilitate an accurate temporal anal-
ysis . An analysis of the temporal properties of recall re-
vealed basically the same pattern observed in the seman-
tic memory experiments discussed above. That is, the
results showed a progressive increase in IRTs as a func-
tion of output position within a cluster, as well as a
progressive increase in IRTs between the end of one re-
sponse cluster and the beginning of the next . In other
words, as Pollio et al . point out, the results are consis-
tent with a two-stage sampling-with-replacement search
scheme .

Patterson, Meltzer, and Mandler (1971), using basically
the same procedure as Pollio et al . (1969), replicated these
findings (although within-cluster IRTs did not exhibit a
clear increase with output position) and described the re-
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suits of a computer simulation of the two-stage random
search model that has been repeatedly proposed over the
years . In this model, category names were randomly sam-
pled with replacement . as were items within a sampled
category . As usual, items were overtly recalled the first
time they were sampled and were simply ignored on sub-
sequent retrievals . In addition, the model assumed float
following each retrieval the subject evacuated the likeli-
hood offinding another item in that category on the basis
of the number of items that remained to be found . When
that estimate was sufficiently low, the subject was assumed
to return to the higher level search and randomly draw
from the pool of categories, followed by another within-
category search . This model closely approximated the
within luster and between-cluster IRT growth functions .
To briefly summarize, the simple random search model

that generates Equation I and provides an interpretation
of its free parameters may best apply under conditions
that minimize clustering . Such conditions might involve
the use of short lists ofunrelated words or words that are
drawn from a single semantic category . Under other con-
ditions (e .g ., large lists of words drawn from several se-
mantic categories), a hierarchical search model with at
least two levels seems more appropriate . Nevertheless,
the fundamental sampling scheme, which involves the
sampling and resampliag of search set items (which, in
turn, results in a growing IRT function), need not be al-
tered. Moreover, the mathematical analysis of cumula-
tive recall by Equation 1 (or Equation 2) may help to
quantify the scope of search through long-term memory,
whether clustering is present or not.

THE AMBIGUITY OF
RECALL PROBABILITY

The studies reviewed to this point were concerned with
the relationship between the temporal properties of re-
call and the underlying search process. Beyond theoreti-
cal considerations such as these, another reason to study
the time course ofrecall is to avoid interpretive ambigui-
ties that might otherwise result . As indicated earlier, most
list memory experiments report only one point on the cu-
mulative recall curve-namely, the point reflecting pro-
gress subjects have made by the end of an arbitrarily de-
fined recall period . Because recall is characterized by two
properties, a single point estimate ofperformance can be
ambiguous. For example. does 25 °k correct recall at the
end of a 1-min recall period reflect a law level of asymp-
totic recall or is it merely one point on a slaw path to 50%
concert recall? In spite of this potential ambiguity, very
few investigations of episodic memory have tracked its
time course . Twoexceptions are investigations into part-
list ruing and hypermnesia .

Output Interference and Part-List Cuing
Slamecka (1968, 1969) reported a curious finding

regarding the associative status of a memorized list of
words. After studying a list, subjects in these experiments

were presented with some of the items from the list to
be used as retrieval cues for the remaining items. If the
list items were associatively encoded, then one might ex-
pect these cues to facilitate access to the noncued items .
instead, Slamecka found that these items were actually
less likely to be recalled relative to a control group that
received no retrieval cues . This part-fist cuing effect is
similar to output interference effects observed in other
contexts . For example, Brown (1968) found that subjects
who were first asked to memorize and recall a list of 25
states were partially impaired in their ability to later gener-
ate all SO states from semantic memory . More specifi-
cally, relative to a control group that was not pretested,
theexperimental subjects were less likely to generate states
from the set of 25 that did not appear on the previously
studied lisle .
Why does the presentation of part-list cues (or the prior

recall of some subset of the list) serve to interfere with
the recall of the remaining items? Roediger (1974, 1978)
pointed out that the interpretation ofthese findings is com-
plicated by the fact that recall may not be approaching
asymptotic levels by the end of an arbitrary recall period .
For example, in part-list cuing experiments, the rate of
approach to asymptote could be reduced simply because
of the extra time required to search throughtie cues after
each retrieval to determine whether or not the retrieved
item should be overtly recalled . If so, then the level of
recall for the noncued items might be depressed merely
because the recall period was too short to allow recall for
those items to reach asymptotic levels .

Roediger, Stellon, and TWving (1977) performed a
detailed analysis ofcumulative recall to determine whether
pan-list cues affect asymptotic recall or rate ofapproach
to asymptote or bath . The theoretical interpretation ofthe
part list ruing effect obviously depends on knowing which
property of recall is affected . Subjects in various condi-
tions studied a list of 48 words and were then given IO min
to recall those words. In one condition, subjects received
32 of the list items at the beginning of the recall period
and were asked to recall the remaining 16 items. These
16 items were termed the cRtical items, and they were
the same for all groups . Relative to a control group that
attempted to recall all 48 items, both asymptotic recall
and rate of approach to asymptote for the lb critical items
were reduced by the presentation of the 32 part-list cues-
Thus, the effect of part-list cues is not entirely the result
ofterminating recall prematurely . Nevertheless, an ade-
quate account ofthe phenomenon must explain why part-
list cues affect both properties of recall .
As indicated above, the negative effect on rate of ap-

proach to asymptote could be caused by the extra check-
ing operation associated with the 32 part-list cues . Ac-
cording to this idea, the subject first searches a mental
search set, retrieves as item, and then searches an exter-
nai search set (viz_, the part-list cues) to determine
whether or not the item should be overtly recalled . Be-
cause the effective size of the search set is increased, the
rate ofapproach to asymptote should be correspondingly
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reduced (Equation 3) . This hypothesis was evaluated by
Roediger et al. (1977) by including another condition in
which subjects were permitted to study the 32 part-lisle
cues for 1 min prior to attempting recall of all 48 items
on rye list (during which time the cues were removed) .
Because the external search set is no longer present in
this case, rate ofapproach to asymptote might be expected
to snatch that ofthe control group. Instead, for the 16 crit-
ical items, rate of approach to asymptote was about the
same as that for the part-last cued subjects . One possible
interpretation of this result is that recall for the 16 criti-
cal items is delayed in both cuing conditions because the
representations of the 32 part-list cues are strengthened
such that they are sampled and retrieved first (whether
the subject is asked to recall them or simply to use them
as cues for the remaining items) .
Rundus (1973) proposed a sampling-with-replacement

model of retrieval consistent with this idea . His model
assumed that each time an item is retrieved from a search
set, its representation is strengthened such that it is more
likely to be sampled again. Because not-yet-retrieved items
are correspondingly less likely to be sampled in a given
moment, the retrieval of thoseitems will be delayed. Part-
list cues may be functionally simfflar to previously re-
trieved items. That is, the cues are themselves strength-
ened such that they are more likely to be sampled. Note
that this theory contrasts with the simplest exponential
search scheme, which assumes a constant probability of
sampling for items in the search set. Indeed, thepresence
of output interference is mare easily reconciled with a
hyperbolic growth function (cf. Bousfield et al ., 1954).

If the part-list cues are strengthened such that they axe
preferentially sampled, this should affect rate of approach
to asymptote while leaving asymptotic recall unaffected .
Roediger et al . (1977), however, found that part-list cues
reduce asymptotic recall as well . Wiry should that hap-
pen? Various explanations are possible . For example, if
subjects employ a stopping rule, then delaying recall by
any method will always reduce asymptotic recall as well
(because subjects will give up before recalling otherwise
accessible words) . Another possibility is that the strength-
ening ofsome items by presenting then as cues interferes
with other, noncued, items such that their status is changed
from recoverable to nonrecoverable . At the present time,
tine available evidence does got allow a clear distinction
between these possible explanations .

HVpCTSYlDf518

Hypermnesia refers to an increase in overall recall prob-
ability with successive recall tests following list presen-
tation . Erdelyi and Becker (1474), for example, presented
subjects with lists of 84 items, consisting of40 nouns and
40 easily named pictures . Following list presentation, sub-
jects were given three successive 7-min free recall tests .
Pot the words, recall performance was essentially flat
across the three tests; however, for pictures, performance
actually increased with each test. This pattern (i .e ., greater
hypermnesia for pictures than for words) has been ob-
served repeatedly .

The questions of interest in this dine of research are
(t) Why does hypermnesia occur? and (2) Why is it re-
stricted to pictorial representations? The answers to these
questions become apparent upon examination of the time
course of free recall . Roediger and Thorpe (1978) ob-
served that cumulative recall comes are often stilt increas-
ing at the end ofan arbitrarily defined recall period (cf.
Figure 2) . They reasoned that three successive 7-min re-
call periods may result in incremental improvement be-
cause subjects are, in effect, given 21 min to recall list
items. Perhaps the extra recall time simply allows the cu-
mulative recall curve to make further progress toward ifs
final asymptote. Ifso, then a comparison of two groups,
one given three successive 7-min recall periods and the
other given a single 21-min recall period, should yield
identical results .
Roediger and Thorpe (197$) performed this experiment

using lists of50 easily named pictures or 50 words. Half
the subjects in each group received three 7-rein recall tests,
whereas the otherhalfreceived a single 21-min recall test .
Unlike in earlier experiments, these authors found evi-
dence of hyperrnnesia for both pictures and words (for
reasons that are unclear) . More to the point, they found
no differences in performance between subjects given
three successive retail tests and those given a single 21-
min recall test . The cumulative recallcurves for each con-
dition are shown in Figure 5. Note that subjects in the
successive testing condition recall many ofthe same items
three times. For the plot shown in Figure 5, cumulative
recall is incremented only when an item is recalled for
the first time (which is, of course, also true of the sub-
jects in the 21-min test condition) .
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Figure 5. Cumulative recall functions produced by a single 21-
min recall period versos three successive 7-min recall periods for
pictures and words. The data were taken tram RoedigerendThorpe
(1878) .
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The analysis of cumulative recall curves also helps to
address the second question pertaining to hypermnesia :
Why is it more likely to occur for pictures than for words?
One hypotheses is that hypermnesia depends on the imag-
inal encoding of list items . Erdelyi, Finkelstein, Hecrell,
Miller, and Thomas (1976), far example, presented sub-
jects with a list ofeasily named pictures or the names of
easily imagined objects . For subjects receiving the names
ofobjects, some were instructed to form vivid mental im-
ages of those objects and some were not . Hypermnesia
was clearly evident when subjects received pictures or
were instntcted to form mental images, but not when they
were simply given a list of words to memorize . Thus,
these results support tie idea that imaginal encoding un-
derlies hyQermnesia .
Rcediger, Payne, Gillcspie, and Lean (1982) consid-

ered another possible explanation . They observed that
manipulations that increase the likelihood of obtaining
hypermnesia also increase the asymptotic level of recall .
This is an important observation because much of the re-
search reviewed earlier suggests that X (rate of approach
to asymptote) is inversely related to N(asymptotic recall) .
Thus, conditions that result in a higher level of asymp-
totic recall (e .g ., pictures) are less likely #o have reached
the higher asymptote at the end of a 7-min recap period .
Additional?-min recall periods would therefore allow for
further progress {i .e ., hypermnesia would be observed}.
By contrast, conditions that result in a lower level of rC-
call (e .g ., words) are more likely to have reached asymp-
tote after 7 min because they are associated with a larger
a. In that case, additional 7-min recall periods will not
be particularly helpful (i .e ., hypermnesia will not be ob-
served) .

Actually, that hypermnesia for pictures generally ex-
ceeds that for words can be explained even without as-
suming that N and X are inversely correlated . That is, the
argument holds if the only difference between two con-
ditions is m asymptotic recall . For example, assume that
the cumulative recall function for pictures is F(t) = 30(1
- e`5'), whereas that for words is F(t) = 20(1 - e 25`),

with t measured m minutes . As calculated from these
equations, the number of pictures recalled will be about
24.8 after 7 min and about 29 .1 afteranother 7 min . Thus,
far two successive 7-min tests, recall should increase by
4.3 items . For words, the number recalled will be about
16.5 after 7 nun and about 19.4 after another 7 min . Thus,
for two successive 7-min tests, recall should increase by
only 29 words . These calculations reveal that less
hypermnesia is expected for dower asymptotic recall levels
even if X is equivalent in the two conditions .

In any case, to test the idea that differences in asymp-
totic recall might underlie the picture-word effect,
Roediger et al . (1982) presented subjects with a list of
60 words to memorize and used a standard manipulation
to vary the number of words recalled . For 20 of these
words, subjects were asked to verify whether or not a par-
ticular letter appeared in the word (a manipulation de-
signed to induce graphemic processing) . Far another 20

words, subjects were asked whether or not the list word
rhymed with a test word (phonemic processing) . For the
remaining 20 words, they were asked whether or not the
word was a member of a category (semantic processing) .
Half the subjects in each group received three 7-min re-
call tests in succession, and the other half received a sin-
gle 21-min recall test . As expected, semantic processing
resulted in a higher level of asymptotic recall than pho-
nemic processing, which, in turn, yielded a higher level
ofasymptotic recall than graphemic processing . Thus, ad-
ditional7-min tests should yield greater absolute gains for
the semantically processed items . Indeed, hypermnesia
(the improvement in recall across successive 7-min tests)
was greater for semantically processed words than for
words that received either phonemic or grapnemic pro-
cessing .
Experiments performed subsequently have suggested

that differences in asymptotic recall may not fully explain
differences in hypermnesia for pictures versus words .
Payee (1986), for example, presented lists of 60 words
at a fast or slow rate and lists of60 easily named pictures
at a fast or slow rate . Far the slowly presented words and
rapidly presented pictures, asymptotic recap was essen-
tially equal. Nevertheless, hypermnesia was still greater
for pictures than for words. The reason for the difference
is that words suffered a greater amount of intertest for-
getting than did pictures when three successive 7-min re-
call tests were used.
These considerations reveal that the mathematical anal-

ysis of long-duration cumulative recall curves might be
somewhat tricky . When relatively shore recall periods are
used, the amount of information lost during recall due to
forgetting is probably negligible, but a lot of forgetting
can occur over 21 mun. Thus, to perform a search set anal-
ysis based on Equation 1, X would need to be disentan-
gled from a forgetting rate parameter (which may differ
across conditions .
Precious research has shown that the course of forget-

ting is usually well described by a power function ofthe
form at-' (Anderson & Schooler, 1991 ; Wixted & Eb-
besen, ?991) . Can exponential retrieval be integrated with
power function forgetting? The random search model as-
sumes that the rate of recall during the recall period is
equal td the rate of sampling (r) times the probability of
sampling a new target item on a given draw, which is
equal to (N-n)15, where n is the number of target items
sampled thus far (so R eventually equals N) . If no forget-
ting is assumed, then the solution to this differential equa-
tion yields Equation 1, the exponential cumulative recall
curve (McGill, 19fs3) . However, the assumption of no for-
getting becomes increasingly untenable as the recall pe-
riod becomes longer . A more realistic model would as-
sume that the rate of recap is equal to the rate ofsampling,
r, times the probability that a new target representation
as sampled, (N - n)IS, times the probability that the tar-
get will be recovered when sampled . The latter probabil-
ity can be assumed to decline as a function of time, ac-
cording to a power function of the form (t + 1)-° .
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Written this way, the power function begins at 1.0 when
t = 0 (i .e ., no encoded targets yet forgotten) and decreases
to 0 as t approaches po (i .e ., all target items forgotten) .
The solution to this new differential equation (details given
in the Appendix) yields the following equation :

F(t) = N(1 - ewmli-c=+i7~] ), (5)

where ~ is the forgetting function parameter that ranges
from a maximum of 1.0 (no forgetting) down to minus
infinity (instantaneous forgetting) . Note that when no for-
getticzg occurs (i .e ., 0 = 1), Equation 5 reduces to Equa-
tion 1, as it should . Furthermore, when 0 is between 0
and 1, recall will be slowed, but all Nrecoverable items
will be sampled before they became unrecoverable (i .e .,
N = asymptotic recall as before) . However, when 0 Ys
less than 0 (as it is in the example to be considered be-
low), souse items that were theoretically encoded in
recoverable formwill become unrecoverable before they
are sampled. Thus, in this case, N only represents the
number of targets iniri0y encoded, not asymptotic re-
call . To better illustrate this point, Equation S can also
be written as

F(r) = N - k(Nlk)"+"', (6)

where k, which is equal to N exp()1O), represents the
number of targets forgotten before they can be retrieved
(assuming J3 is negative) . Thus* asymptotic recall in this
case is equal to N - k. Equations 5 and 6 are actually
the same equation written in different forms. Both are
three-parameter equations, bat the inclusion of a forget-
ting rate parameter seems inescapable when recall periods
become very long .
How weir do these equations describe episodic cumula-

tive recall data when long recall periods are used? Fig-
ure 6 shows the Roediger and Thorpc (1978) data pre-
sented in Figure 5, except that the data from the two recall
test conditions (3 x 7-min vs. 21-min recall) were aver-
aged together for both pictures and words. The upper
panel shows the best fit provided by Equation 1, and it
dearly reveals float the fit is inadequate . The lower panel
shows the fit provided by Equation 6, which is obviously
much better .

Is the improved fit nothing more than yetanother dem-
onstration that the addition of free parameters always
helps? Actually, several arguments suggest that the im-
proved fit may be more than that . First, the choice ofthe
power forgetting function was not arbitrary but was in-
stead based on existing information about the typical form,
of forgetting . When analyzing forgetting functions, the
exponential generally provides a poor fit whereas the
power function generally provides a muchbetter fit (An-
derson & Schooler, 1991 ; Wizted & E66esen, 1911).
When Equations S sad6are derived assuming exponen-
tial forgetting (which also adds a third free parameter),
the resulting equations continue to exhibit large and sys-
tematic deviations from the dais (although some improve-
ment occurs because of the extra parameter) . Visually,
the ft does not look much different from that provided
by the simple exponential . 'I'tais is what would be expected
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Figure 6. Upper panel: Cumulative faced functions for pictures
andwords (averaged over the 3 x 7-rain amd 21-mio recall coed}
Mans). The saSd dots represent theleadsquares fitatEquation 1.
Lowerpanel: The same data, with the solid carves iepresentinsgthe
leastsquares $rarEqushoa 6. The data were taken from Roedirr
and Thorpe (IM) .

if the present analysis were on the right track, because
exponential forgetting is an incorrect assumption .
Second, the values assumed by the free parameters,

which are presented in Table 2, turn out to be sensible .
For the words, the parametersobtained from Equation b
suggest that 40.9 of the 50 items were initially encoded,
but 7.8 were lost before they could be retrieved. Thus,
asymptotic recall in this case would be equal to 40.9 -
7.8, which equals 33 .1 . For the pictures, the parameters
suggest that 48.8 items were initially encoded, but 3 .6
were forgotten before they could he retrieved . Asymp-
totic recall in the case would be 48.8 - 3,6, which equals
45 .2 . Thus, the estimated number of items forgotten dur-
ing recall seems reasonable .

Third, the rate of forgetting is estimated to be less for
pictures than for words (- .19 vs . -38) . As indicated

0 3 5 9 12 75 78 21
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Table 2
Parameter Values Obtained From Fitting Equation 6
to [he Cumulative Recall Curves Shown in F'igure 6

N k Ii
Words 40.9 7.8 - 38
Pictures 48 .8 3.6 -.l9

above, when three successive recall periods are used,
some items recalled on earlier tests are forgotten on later
tests. Thus, if we assume that the forgetting of not-yet-
retrieved items is similar to the forgetting of already-
retrieved items, then the relative amount of between-test
forgetting in a hypermnesia experiment can be used to
assess forgetting rate differences . Roediger and Thorpe
(1978) found no differences between pictures and words
on this measure, whereas Payne (1986), using similar ma-
terials, found that forgetting was less for pictures than
for words. Given the inconsistent findings (and, more im-
portantly, the absence of actual forgetting functions), it
is difficult to evaluate whether or rat the estimated for-
getting rate difference between pictures and words is ac-
curate . Nevertheless, Payne's (1986) data at least hint that
pictures are less likely to be forgotten than words, as the
present analysis suggests .
Note that nothing in the data shown in Figure 6 sug-

gests that any forgetting occurred, much less that the rate
of forgetting was less for pictures than for words. Never-
theless, the use of Equation 6 suggests that the degree of
deviation from the expected exponential course of retrieval
implies that forgetting did indeed occur and that it was
less for pictures than for words.
Roediger and his colleagues have repeatedly observed

that the failure to track cumulative recall can lead one to
severely underestimate the number of items that can be
recalled . For the data shown in Figure 6, for example,
had recall been terminated after 3 min (which is longer
than most studies allow), the number of pictures recalled
would have been about 22 . Visual inspection of Figure 6
suggests that asymptotic recall would actually be well
above 36 items, and the use of Equation 6 suggests that
asymptotic recall would be closer to 45 items (although
a very long recall period would be required) . Note that
even asymptotic recall may not be the best measure of
performance when the rates of forgetting differ between
conditions . Instead, N(the estimated number ofitems ini-
tially encoded) might be the preferred dependent measure.
Far example, iftwo conditions result in the initial encod-
ing ofthe same number ofitems, but the rate of forgetting
in one condition exceeds that in the other, then asymp-
totic recall will differ in the two conditions . That differ-
ence merely reflects forgetting rate differences, not dif-
ferences in the amount of material learned .

AL'T'ERNATIVE THEORETICAL MODELS

Throughout this review, a basic random search model
was used to interpret and link together various investiga-

tions into the time course of flee recall . The simplicity
of this model allows it to serve that conceptual role, but
also disqualifies it from serving as a comprehensive the-
ory of retrieval. Conversely, more complex accounts can
serve as comprehensive theories, but are less successful
in helping to make sense ofseemingly disparate findings .
Nevertheless, the question ofwhether or not such theories
can accommodate the relevant findings is a reasonable one
to ask. In this section, some alternatives to the random
search model are considered, beginning with its transla-
tion into a parallel search model_

Parallel Versus Serial Processing
'Fhe random search model is generally described in

serial terms . That is, an item is assumed to be randomly
selected from a search set, evaluated, and then replaced,
after which the next item is randomly sampled, evaluated,
and replaced, and so on . However, the search for encoded
list stems may not be sequential in nature . According to
the parallel search model, items in a search set are simul-
taneously activated and each has the same momentary
probability ofreaching conscious awareness following ac-
tivation (e .g ., McGill, 1963 ; Vorberg& Ulrich, 1987).
That some items become conscious almost instantly
whereas others require a much longer period of time is
attributable to chance. Moreover, according to this model,
cumulative recall will be described by Equation I and A
reflects the momentary probability of retrieval associates!
with individual items. Thus, for example, if each acti-
vated item has a constant per-second probability ofreach-
ing awareness equal to .25, then X will equal .25 (and
average recall latency will equal 4 sec) .

It may not be possible to distinguish between serial and
parallel models in practice, as Vorberg and LTlrich (1987)
have pointed out, but certain results seem to fit more nat-
urally into one model or the other, For example, parallel
processing in visual search is suggested by the fact that,
under some conditions, the number of distractors in a
visual display does not affect the time taken to find a tar-
get (e .g ., Treisman, 1986). Presumably, adding distrac-
[ors merely increases the number of simultaneous
searches . Similarly, if enlarging a mental search set by
adding additional targets or distractors failed to affect A,
that result would be mast easily interpreted in terms of
a parallel model. For example, if 5 = 5 (f .e ., the acti-
vated search set contains 5 items) and the momentary
probability of retrieval associated with each of chose 5
items was .l d, then X would equal .la. If 5 additional
target items were added to alit search set, each with a
.10 momentary probability ofretrieval, then X world re-
main equal to .10 (though asymptotic recall would
double) .
The simplest serial mode!, by contrast, predicts that L

will decrease as S increases accordingto Equation 3. Most
of the literature reviewed earlier seems to suggest that X
is indeed inversely related to S , as the serial model sug-
gests . Thus, far example, when subjects are asked to
generate items from a semantic category, A decreases as
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category size increases . Similarly, as episodic list length
increases, or as PI builds (both of which theoretically in-
crease search set size), X decreases. Results such as these
are most easily interpreted in terms ofa serial model that
suggests an inverse relation between Sand k. Neverthe-
less, they do not rule out the parallel version. For exam-
ple, if one assumes a finite pool of activation that is spread
evenly over all S items, then the interpretations provided
by the parallel and serial models become identical (i .e .,
S and A should be inversely related) .

Mathematical MadificaLions of Random Search
Several assumptions of the random search model are,

at best, approximations to the truth . Ins episodic memory
experiments, for example, the model assumes that nofor-
getting occurs during the course of recoil . Although this
assumption may be essentially correct when a short re-
call period is used, it becomes increasingly untenable as
the length of the recall period increases. In addition, the
simplest version assumes that (1) clustering does not oc-
cur because items are independently sampled, (2) each
item in the search set is as likely as any other to be sam-
pled on a given draw, and (3) the dynamics of retrieval
are the same for every subject in the experiment . None
of these assumptions is true, and theprevious analysts as-
sumed that violations ofthem do not alter the general in-
terpretation offered by file random search model. Never-
theless, in some cases (e .g ., if clustering is expected to
differ substantially across conditions), it may be prefera-
ble to apply a more exact mathematical analysis that ad-
dresses one or more of these potential problems .
Three articles appearing in the Journal ofMathemati-

eal Psychology have dealt with the problem of relaxing
one of these assumptions (HerEmann & Pearle, 1981 ;
Moxxison, 1974; Vorberg & Ulrich, 198'7) . These arti-
cles present very detailed mathematical treatments that will
only 6e touched on here . As already discussed, Herrmann
and Pearle (1981) addressed the mathematics of cluster-
ing and showed that a random sampling model will yield
an exponential or a hyperbolic cumulative recall curve
(or something in between) depending on how clusters are
treated whenthey are sampled again after already having
been retrieved once . Morrison (1979) ignored the prob-
lem ofclustering and instead considered how to deal with
the problem of individual differences in rate of approach
to asymptote (X). He showed that when exponential func-
tions with different values ofa are averaged together, tie
best-fitting exponential to the aggregate cumulative re-
call curve will initially overestimate and subsequently
underestimate the level of recall . Indeed, when the ex-
ponential fails to provide a good fit, this is the usual way
in which it deviates from the data . Vorberg and Ulrich
(1987) ignored the problem of clustering and the prob-
lem of individual differences and instead concentrated on
the effect of relaxing the assumption that each item in a
search set has an equal probability of being sampled.
When subjects are asked to generate pets, for example,
the words dog or cat are more likely to be sampled than

is the word hamster. Again, they showed that the best-
fitting exponential to the cumulative recall curve will ini-
tially overestimate and subsequently underestimate the
level of recall (the usual deviation) when items have dif-
ferent probabilities of being sampled.
These modifications to the random search model donot

attempt to cope with all ofthe nuances of retrieval. For
example, none deals with the effect ofoutput interference
or changes in the subject's willingness to continue search-
ing for items during the course of recall . Other models
designed to accommodate such effects have been devel-
oped inn recent years .

Search of Associative Memory
The search of associative memory (SAM) model ofhu-

man memory was initially conceived as a more realistic
extension of the random search model (Shiffrin, 1970).
Indeed, it still shares many features with the random
search account, so it is perhaps not surprising that SAM
provides an adequate account of cumulative recall . Very
briefly, SAMassumes that a retrieval cue serves to acti-
vate a search set consisting of a collection of "images"
(i .e ., units ofmemory that contain the desired item). Some
images are more strongly activated than others because
they are more strongly associated with the retrieval cue.
Once activated, the probability that an individual image
will be sampled depends on its relative strength . Once
sampled, the desired list item may or may not be reco-
vered. That is, it may not be possible to reconstruct the
original list item from the image it created_ The same idea
wasalluded to earlier when considering the effect of study
time on rate of approach to asymptote (cf. Figure 4) .
Note that if every image in the search set were activated

to the same degree, and this remained tree throughout the
recall period, then the sampling of images would be tan-
tamount to a random search . However, other components
of SAM serve to differentiate it from the vastly simpler
random search model. For example, once retrieved, the
item is not only replaced but its association with the re-
trieval cue is strengthened such that it is more likely to
be sampled again. In addition, each retrieved item is as-
sumed to act as a new retrieval cue float serves to activate
and sample other items. Finally, subjects are assumed to
employ a "stopping rule" ifa long period oftime elapses
without a successful recovery .

In spite of these elaborateons, it seems that under most
conditions SAM provides essentially the same interpre-
tation ofX that the random search model provides. Thus,
for example, as list length increases, the number of rele-
vant images increases (i.e ., search set size increases),
which decreases the relative activation associated with any
one image. Therefore, X should decrease. Indeed, simu-
lations provided by Raaijmakers and Shifften (1480) show
this to be true of SAM. They slid not actually provide a
mathematical analysis of their simulated cumulative re-
call curves, but they noted that they appear exponential
in form . When Equation 1 is fit to their simulated data
(estimated from their Figure 11), it provides an excellent
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fit and X decreases as simulated list length increases from
10 to 40 items . For the 10-item list (1-sec presentation
rate), the best-fitting exponential was 3 .9(1-e 06'''),
whereas the corresponding equation for the 40-item list
was 9.5(1-e- o'8') .

Although SAM provides a reasonable account of cu-
mulative recall (e .g ., Gronlund & Shiffrin, 1986), it
should be clear that, unlike the random search model, its
interpretation of A is not necessarily fixed . That is, if an
experimental manipulation results m a decrease m X, the
random search model is bound by Equation 2 to assume
that search sec size increased (or that the sampling rate
decreased) . SAM, by contrast, can explain such results
in a variety of ways .

Distributed Memory Models
Another aspect of the random search model that almost

surely represents an oversimplified view of memory is
the idea that items are stored as unitary traces in a physi-
cally localized search set . For some time now, the avail-
able physiological evidence has suggested that memory
is probably better thought of ac distributed (e .g ., Lash-
ley, 1950) . Although the random search model could be
described in distributed terms, an altogether different dis-
tnbuted memory model designed to explain free recall was
proposed by Metcalfe and Murdock (1981) . This model
is one of a series of distributed memory models devel-
oped by these authors in recent years (e .g ., Eich, 1982 ;
Murdock, 1982, 1983) . The central idea is that individ-
ual item representations are combined (by means of con-
volution) into a single memory vector (M) instead ofbe-
ing stored as separate entities in a search set . Thus, once
convolved, individual items share the same neural sub-
strate . A retrieval cue extracts an individual item's rep-
resentation from M by die operation of correlation in-
stead of by random sampling-
Convolution and correlation are mathematical opera-

tions analogous to addition and subtraction . For exam-
ple, assume that item A can be represented along three
semantic dimensions by the numbers .5, -.4, and .6,
whereas item B can be represented along those same di-
mensions by the numbers .2, .1, and -.2 . Adding these
vectors yields a combined vector (analogous to a con-
voived trace) of .7, -.3, and .4 . This grand vector,
denoted here by M, contains the infozination associated
with both items, although it now resembles neither of
them . The re-presentation of item B can be used as a cue
to retrieve !rein A by simple subtraction of item S's vec-
tor from the grand vector, an operation analogous to cor-
relation .

In the model described by MetcaJfe and Murdock
(1981), free recall of a recently presented list of words
occurred in the following way . First, at the recall signal,
the last rehearsed item was correlated with M, which
served to retrieve mother item's representation . That rep-
resentation was then correlated with M, which retrieved
another item's representation, which in turn was corre-
lated with M and so on . This process continued until a

certain amount of time elapsed without a successful
retrieval (3 sec in the simulations they reported), at which
point the representation of the encoding context was cor-
related with YI . That operation may retrieve a new item,
which may then be used as a retrieval cue for another item,
and so on, until another search failure occurs .
This model, unlike SAM, is based on a view of retrieval

fundamentally different from that of the random search
model . Nevertheless, certain aspects of the two accounts
are analogous . The convolved trace, M, is analogous to
a search set (i .e ., it is the memory structure that contains
the item representations) . Furthermore, in both models,
a serial retrieval operation is performed on the memory
structure that leaves it unaltered, representations may or
may not be sufficiently intact to reconstruct the original
list item, and, as recall proceeds, more time will be re-
quired to find a not-yet-recalled item because of the re-
retrieval of previously recalled items . These similarities
suggest that Metcalfe and Murdock's (1981) encoding and
retrieval model might be able to provide a reasonable ac-
count of the dynamics of free recall and, in some cases
at least, may provide an interpretation ofX that is similar
to that offered by the random search account .

At the present time, these are only speculations . The
encoding and retrieval model as described by Metcalfe
and Murdock (1981) was consistent with a large number
of empirical free recall phenomena, but the timing of free
recall was not among them . In particular, the model pre-
dicted an essentially flat IRT function, whereas in reality
IRTs increase with output position (Equation 4) . The
probable reason for this odd prediction was the choice
ofa 3-sec stopping rule used throughout their simulations .
The authors note that the use of a longer stopping rule
produces an IRT growth function that is at least qualita-
tively similar to empirical IRT data .

CONCLUSION

The time coarse of free recall is an orderly phenome-
non that is characterized by two properties_ asymptotic
recall and rate of approach to asymptote . When deciding
upon the length of a recall period, researchers presuma-
bly allotwhat they believe to be enough time to allow per-
formance to reach asymptotic levels. However, it seems
likely that they are often mistaken in their assessment of
the dynamics of free recall . Roediger and his colleagues
have shown repeatedly that far long lists of words (e .g .,
30 or more), recall may still be noticeably increasing even
after 21 min, which is far longer than the typical recall
period. If recall is still progressing at the end of a recall
period* then the percentage of correct responses at that
point can be a misleading dependent measure . Indeed,
failure to track the time course of recall led some to ar-
gue thathypermnesia was essentially "unforgetting ." The
relative tack of interest in cumulative recoil is surprising
in light of considerations such as these .

In addition to helping to resolve empirical ambiguities,
the time course ofrecall may also provide unique insight
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into the nature of retrieval . Retrieval from both episodic
and semantic memory follows a negatively accelerated
dime course that is described well by the exponential or
the hyperbola . Much of the research reviewed earlier is
consistent with floe idea that the rate ofapproach to asymp-
tote reflects the breadth of search undertaken to find the
desired items . Indeed, that is the central theoretical con-
clusion to be drawn from this literature . Note that no new
theory was needed to advance this hypothesis . The ex-
ponential form of retrieval and its connection to random
search model have been known for decades . By its very
nature, the random search model implies that the rate of
approach to asymptote should be indirectly related to the
size of the search set . Although the issue has rarely been
explicitly addressed, the half century of research per-
formed since Bousfield and Sedgewick's (1944) seminal
work suggests that this implication may be correct . Fur-
thermore, because it is not always pleat how arc ex-
perimental manipulation wild affect the parameters of
search, analyzing the dynamics of recall (in particular,
rate of approach to asymptote) may turn out to be a prof-
itable endeavor.
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APPENDIX

The differential equation that yields exponential retrieval (In
dow & Togano, 1970) is

dnidt = A (N - n),

where n is the number of targets recalled by time tand X is the-
oretically equal to rIS_ Thus, for conceptual clarity, the equa-
tion may be rewritten as

dnldt = r((N - n)IS} .

This equation, which uses a continuos approximation of the
discrete sampling process, states that the rate of recall, dnldt,
is equal to the rate of sampling, r, times the probability of sam-
pling a new target item, (N-n)!S . When solved, this differen-
tial equation yields Equation 1 . Here, we simply add the assump-

tion that a sampled target is recognized as a fist item with
decreasing probability according to a power function such that

dnldt = r{(N - n)IS} (t + 1)-° .

This equation states that the rate of recall, dnldt, is equal to the
rateofsampling, r, times the probability of sampling a new target
item, (N-n)!S, times the probability that the sampled target is
recognized as a target, (t+ 1)-°' . "I'he latter value begins at 1 .0
and declines to zero as t approaches infinity . This new differ-
ential equation can be salved by first rearranging to

dnl(N-n) = a(t+l)-"dt,

where rl5 has been replaced by X far notaUOrza1 convenience .
Integrating both sides of this equation yields

-Iog(N-n) _ {al(1-a)}(t+l)'-a + C,

where C is the constant of integration . Multiplying both sides
by -l, exponentiating bath sides, aid rearranging produces

n = N - exg[-{k!(1-a)1 (t+l}~-" - C],

which can be reduced to

n = N - k exp[-{Xl(1-a)}(t+l)'-"], (A1)

where k = czp[-C] . Note that n = 0 when t = 0 (i .e ., no
items have yet been recalled at the instant tree recall period be-
gins) . Substituting these values into the above equation gives

0 = N - k exp[-AI(1-a)],
or

N/k = exp[-V(1-a)] .

Substituting Nlk for exp[-A!(l-a)] in Equation A1 yields

n = N - k(Nlk)(`+') sa

where R is equal to 1-ce. This is Equation b in the text with
n = F(t) . Note that when t approaches y and a is greater than 1
{i .e ., J3 less than 0}, the above equation becomes n = N - k.
That is, the number ofitems eventually recalled equals the num-
ber of items encoded (N) minus the number forgotten during
the course of recall (k) . Equation 5 is obtained by noting that
the equation, Nlk = exp[-~l(1-~)], can be rewritten as

k -- Nexp[TJ(l-a)] .

Substituting Nexp[Xl(1-a)] for k in Equation A1 yields

n = N(1 - exp~~~l/3)~1-(tfl)~)l,

which is Equation 5 with n = F(t) . Note that when a = 0 (such
that $ = 1), which implies no forgetting, this equation reduces
to the standard exponential growth function (i .e ., Equation I) .
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