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The recall of multiple items from long-term memory is
often held to be a competition of sorts in which an item’s
chances depend as much on the strengths of other items as
it does on its own strength (Rundus, 1973; Shiffrin, 1970).
According to this relative-strength rule, the probability of
retrieving an item equals its strength divided by the sum of
all the item strengths. Thus, a weak item with 10 equally
weak peers has as much chance of being retrieved as a strong
item with 10 equally strong peers. More paradoxically, an
item that is the weakest of a few will often fare better than
one that is the strongest of many because an item’s absolute
strength can be overshadowed by the sheer number of its
competitors.

Models of free recall that invoke the relative-strength
rule typically include two stages (e.g., Gronlund & Shiff-
rin, 1986; Raaijmakers & Shiffrin, 1980; Rohrer & Wixted,
1994; Wixted & Rohrer, 1994). First, items are sampled
from a set of items according to the relative-strength rule,
which, as described below in more detail, determines the
latency of each response. Second, a sampled item is re-
covered into consciousness only if its strength exceeds
some threshold. Thus, whereas all items will eventually be
sampled (unless the search ends prematurely), only the
strong items will be recovered, as consistent with the tip-
of-the-tongue phenomenon (Brown & McNeill, 1966).
Notably, this view of free recall predicts that recall latency
and recall total should be independent. An item’s latency
reflects its relative strength and an item’s likelihood of being
recalled reflects its absolute strength. The predictions of
this dissociation are now presented in more detail.

Relative Strength and Recall Latency
A very specific instance of the relative-strength model

is the so-called random-search model (Bousfield, Sedge-
wick, & Cohen, 1954; McGill, 1963). This version of the
relative-strength model assumes that all items have the
same strength, whereas the relative-strength rule, of course,
allows for variable strengths. The assumption of equal
strengths has rightly been criticized as untenable because
subjects typically recall items in a systematic order, not a
random one (Murdock & Okada, 1970; Shiffrin, 1970). Such
systematic recall orders are easily explained, of course, by
item strength variability, as allowed by the relative-strength
model.

The relative-strength model will be tested herein by an-
alyzing the means and distributions of both latencies and
interresponse times (IRTs). For each analysis, the equal-
strength model will be fit to the data and the observed de-
viation will be compared to the deviation predicted by
variable strengths. Fortunately, the mathematical nature of
the predicted deviation for several of these analyses has
previously been derived by Vorberg and Ulrich (1987) in
order to “motivate researchers to test the model rigorously”
(p. 3). Each of the analyses allows for more than one qual-
itatively distinct pattern of deviation from the equal-
strength model and only one, of course, is predicted by the
variable-strength model. Therefore, the presence of any
one of these alternative deviations would provide evidence
against the relative-strength model. 

The relative-strength model can be envisioned as either
a serial or parallel process (Vorberg & Ulrich, 1987). The
serial version is presented here because it better serves the
purpose of the present investigation, not because of any
evidence in favor of it. According to this interpretation,
items within a mental search set are randomly sampled one
at a time at a constant rate. A sampled item is immediately
recognized as either a not-yet-sampled item (and then re-
covered into consciousness) or a previously sampled item
(and ignored). The probability of sampling a particular
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item (say, item k) equals its strength divided by the sum of
all item strengths (sk /∑si), which is the relative-strength
rule. Regardless of whether item strengths vary or not,
each item strength remains constant across time. Mathe-
matically, the reciprocal of the sampling probability
equals the item’s expected latency (τk). For example, if the
flip of a coin yields “heads” with probability 1⁄ 2, then the
number of flips required, on average, before “heads” ap-
pears equals the reciprocal of 1⁄ 2, or 2. Likewise, if the
probability of an item being sampled equals 1⁄6, then the
number of samples required, on average, before that item
is sampled equals 6. Thus, if each sample requires, say,
1⁄ 2 sec, then its observed latency equals 3 sec.

Table 1 illustrates the effect of relative strength on re-
call latency. In row 1a, each of the 6 items has strength 1.
Thus, each item has a sampling probability of 1⁄6 and an
expected latency of 6. If each strength is doubled, as in
row 1b, the expected latency of each item is unchanged
because latency is a function of relative strength, not ab-
solute strength. When strengths vary, expected latencies
vary as well but are calculated in the same manner. For the
variable strengths in row 2a, for example, the item with
strength 0.5 has a sampling probability of 0.5⁄6 or 1⁄12 and,
therefore, an expected latency of 12. On the other hand,
the item with strength 1.5 has a sampling probability of
1.5⁄6 or 1⁄4 and, therefore, an expected latency of 4. Not sur-
prisingly, the stronger items have faster expected laten-
cies. If each item strength is doubled, as in row 2b, none
of the item latencies change. In summary, an item’s ex-
pected latency depends on its relative strength regardless
of whether item strengths vary or not.

Even though each item’s sampling probability remains
constant throughout the recall period, the relative-strength
model predicts that the observed rate of recall will decline
asymptotically. This is simply explained by the declining
number of not-yet-sampled items within the search set. In
contrast, the recall of items from short-term store (i.e.,
after a zero retention interval) yields a rate of recall that is
roughly constant. This difference serves to underscore the
important point that the relative-strength model describes

recall from long-term store (i.e., after a task-filled reten-
tion interval), not short-term store.

The equal-strength model has received considerable at-
tention in recent years because of its heuristic interpreta-
tion of mean latency (Rohrer & Wixted, 1994; Rohrer,
Wixted, Salmon, & Butters, 1995; Wixted & Rohrer, 1993,
1994). Specifically, the equal strength model predicts that

mean latency � search set size ∗ duration of sample.

Thus, if sampling rate is assumed to remain constant, mean
latency measures search set size. According to the model,
then, an experimental manipulation that doubled mean la-
tency must have also doubled search set size. In Table 1,
for example, the 3 items in row 3a yield a mean latency of
3 whereas the 6 items in row 3b yield a mean latency of 6.

Fortunately, this direct relationship between mean la-
tency and search set size is effectively retained when item
strengths vary. In Table 1, for example, the 6 items in
row 1a have no variability and their mean latency equals 6.
In row 2a, the 6 item strengths vary considerably and their
mean latency equals 7, a relatively modest increase. More-
over, because an increase in variability can only increase
mean latency, as proven in the Appendix, relative com-
parisons of mean latency across experimental conditions
are only slightly distorted. That is, if the mean latencies
for two experimental conditions can only increase, then
the ratio of the two mean latencies remains relatively
stable. As an illustration, the 3 equal-strength items in
row 3a yield a mean latency of 3, and the 6 equal-strength
items in row 3b yield a mean latency of 6. In contrast, the
3 variable-strength items in row 4a yield a mean latency
of 3.67 and the 6 variable-strength items in row 4b yield a
mean latency of 7. Thus, even though variability increases
the mean latency for each of the two list lengths by
roughly 20%, the ratio of the variable-strength mean la-
tencies (3.67�7 � .52) is only 4% greater than the ratio of
the equal-strength latencies (3⁄6 � .50).

Empirical support for this interpretation of mean latency
as a measure of search set size derives from two studies in
particular. First, an increase in study list length, which is

Table 1
Illustrations of the Relative-Strength Model and Recovery Threshold

Mean Mean
Item Strengths Strength Item Latencies Latency

s1 s2 s3 s4 s5 s6 s τ 1 τ 2 τ 3 τ 4 τ 5 τ 6 τ
1a. 1 1 1 1 1 1 1 } 6 6 6 6 6 6 6
1b. 2 2 2 2 2 2 2

2a. 0.5 0.6 1.0 1.2 1.2 1.5 1 } 12 10 6 5 5 4 7
2b. 1.0 1.2 2.0 2.4 2.4 3.0 2

3a. 1 1 1 1 3 3 3 3
3b. 1 1 1 1 1 1 1 6 6 6 6 6 6 6

4a. 0.5 1.0 1.5 1 6 3 2 32⁄3
4b. 0.5 0.6 1.0 1.2 1.2 1.5 1 12 10 6 5 5 4 7

5a. 0.4 0.5 0.6 1.0 1.5 2.0 1 * 12 10 6 4 3 7
5b. 0.5 0.6 1.0 1.2 1.2 1.5 1 12 10 6 5 5 4 7

6a. 0.4 0.5 0.6 1.0 1.5 2.0 1 * 12 10 6 4 3 7
6b. 1.0 1.2 2.0 2.4 2.4 3.0 2 12 10 6 5 5 4 7

Note—All values are exact. *Indicates item with strength below the recovery threshold of 0.5 (see text).
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widely believed to increase the number of items within the
mental search set, causes mean latency to increase by a
roughly proportional amount (Rohrer & Wixted, 1994).
The second line of evidence derives from a study of proac-
tive interference (Wixted & Rohrer, 1993). In this experi-
ment, subjects underwent a rapid succession of 3 trials
with categorically related words (e.g., three fruits, three
more fruits, and three more fruits). On each trial, subjects
were required to recall only those words from the most re-
cent study list. Recall totals declined with each subse-
quent trial (which is the usual finding), yet the mean la-
tency of those responses increased from about 3 sec on
Trial 1 to about 7 sec on Trial 3. Thus, given the widely held
view that the mental search set includes all categorically
related items from recently studied lists, the observed in-
crease in mean latency is consistent with the view that
mean latency reflects search set size.

Absolute Strength and Recall Total
A relative-strength sampling process by itself cannot

account for most free recall phenomena. For example, if
any sampled item is automatically recalled, then recall
total would simply equal search set size. Therefore, because
search set size determines recall latency, a relative-strength
sampling process by itself would predict an intrinsic cor-
relation between the measures of recall latency and recall
total. In reality, however, recall latency and recall total are
empirically independent, as demonstrated by the manipu-
lations of study list length and proactive interference that
were described above. The longer study lists increased both
mean latency and mean total—a positive correlation—
whereas the build-up of proactive interference increased
mean latency but decreased mean total—a negative corre-
lation. Incidentally, rather than measure recall total, one
can instead calculate recall accuracy, the proportion of
study items recalled, which is not redundant with recall
total when study lists vary in length. However, recall latency
and recall accuracy were also empirically dissociated in
Rohrer and Wixted (1994).

If search set size does not equal recall total, then the
search set obviously includes items that are not recalled.
For this reason, relative-strength models include a process
that determines whether a sampled item is recovered into
consciousness. According to the simplest instantiation of
this recovery stage, an item is recovered if its absolute
strength exceeds some fixed threshold. In Table 1, for ex-
ample, the recovery threshold is set at 0.5. Thus, the item
in row 5a with strength 0.4 is below threshold and conse-
quently not recalled. In contrast, all items in row 5b are
above threshold.

Even though below-threshold items are not recalled,
these items still affect retrieval because their presence af-
fects the relative strengths of the above-threshold items.
Therefore, the relative-strength model cannot be tested
unless it specifies how many unrecalled items are in the
search set. It is often implicitly assumed that the search set
includes all of the study items, more or less, and several
findings are consistent with this hypothesis. In the list length
experiment described above, for example, mean latency, a

measure of search set size, increased by an amount that
was proportional to the increase in list length. Likewise,
mean latency increased with the build-up of proactive in-
terference by an amount that was roughly proportional to
the number of recently studied, categorically related words.
Finally, free recall errors are quite rare, consistent with the
view that the search set includes few, if any, extralist items.

Now, if recall latency reflects search set size (i.e., list
length) and recall total reflects absolute strength, then it
ought to be possible to manipulate recall total without af-
fecting recall latency. Specifically, if each item’s absolute
strength is increased by the same proportion, then each
item’s relative strength should remain constant (as in rows
2a and 2b in Table 1). This prediction of the model is con-
sistent with the results of an experiment in Rohrer and Wix-
ted (1994) in which subjects studied 6-word lists at dif-
ferent presentation rates. Not surprisingly, longer study
time produced considerably greater recall total, in keeping
with the view that an increase in the mean absolute strength
results in a greater number of above-threshold items. In
spite of this robust effect on recall total, study time had no
effect on mean latency, which is consistent with the relative-
strength model’s claim that recall latency reflects the num-
ber of study words. An illustration of this finding is given
in Table 1. The “quickly studied” items in row 6a have mean
strength 1 whereas the “well-studied” items in row 6b have
mean strength 2. As shown, recall totals differ and mean
latencies do not.

The relative-strength (with threshold) model can now
be briefly summarized as follows. A mental search set
that includes essentially all of the study items is sampled
(in serial or in parallel) according to the relative-strength
rule, and a sampled item is recovered into consciousness
only when its absolute strength exceeds a threshold. Re-
call latency reflects the number of items within the search
set (i.e., list length), whereas recall total reflects the num-
ber of recoverable items within the search set. Likewise,
an item’s relative strength determines when it is recalled,
whereas an item’s absolute strength determines whether it
is recalled.

The model makes a counterintuitive prediction that will
be tested by the present experiment. Specifically, mean la-
tency should be independent of recall total within a given
condition. For example, if subjects study 8 words, then the
mean latency for trials in which 3 words are recalled should
equal that for trials in which 6 words are recalled, even
though latency is measured from the onset of the recall pe-
riod. This result could not be easily explained by any model
that defines the search set as a collection of eventually re-
called items, as does the relative-strength model without
recovery threshold. Such a finding is also counter to the
widely held view that mean latency should be greater for
trials with greater recall totals because a subject requires
more time to give more responses.

In summary, the first aim of the present experiment is to
examine whether the nature of free recall latencies and IRTs
is consistent with the predictions of the relative-strength
model. Second, the independence of relative strength (as
measured by mean latency) and absolute strength (as mea-
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sured by recall total) will be tested by partitioning trials by
recall total before performing each analysis.

METHOD

Subjects
Twenty-five University of California, San Diego, undergraduates

participated for course credit. 

Materials
For each subject, 28 eight-word lists were randomly chosen with-

out replacement from a list of 224 four-letter monosyllabic words.

Procedure
Subjects were tested by computer in the presence of an experi-

menter. Each subject participated in 3 practice trials and 25 scored

trials. Each trial began with a 2-sec get-ready prompt and the sub-
sequent presentation of 8 study words, one at a time, for 3 sec each.
Subjects read the words aloud. In the subsequent distractor task,
10 three-digit numbers appeared one at a time for 2 sec each and sub-
jects read the 3 digits aloud in ascending order of value. Subjects
were then prompted to recall, in any order, the words of the most re-
cently studied list during a 30-sec recall period. A voice key and com-
puter recorded each response latency to the nearest millisecond. An
experimenter monitored these latencies via computer in order to
record voice key false alarms (e.g., the recording of a cough), voice
key misses (e.g., the failure to record a soft-spoken response), and
subject errors. A 10-sec rest period preceded the next trial.

Latencies resulting from an extraneous noise (e.g., coughs) were
removed. Of the 625 trials, 36 included a response that was not re-
corded by the voice key, and these trials were excluded from further
analysis. In the remaining 589 trials, subjects recalled a total of
2,594 words, including 52 errors (2%). Because temporal issues 

Figure 1. Latency distributions and cumulative recall func-
tions given by the variable-strengths simulation (row 5a, Table 1)
and the variable-strengths-with-threshold simulation (row 5b,
Table 1). Each plot includes the best fitting exponential distribu-
tion (Equation 1).

Figure 2. Latency distributions for recall totals 3–7 and the
best fitting ex-Gaussian functions (Equation 2). The parameter
estimates are given in Table 2.
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were primary in this investigation, these errors were included in the
analyses in order to avoid distortion of the IRTs that preceded or fol-
lowed each error (see Rohrer & Wixted, 1994). The number of trials
with recall totals 1 through 8, respectively, were 27, 56, 91, 120, 112,
85, 56, and 30. Analyses are presented for recall totals 3–7 only. The
recall totals of 1 and 8 were too rare and a recall total of 2 yields only
one IRT, thereby disallowing an examination of mean IRT growth.

Statistical Technique
The best fitting theoretical distributions were determined by max-

imum likelihood estimation (Maindonald, 1984; Ratcliff & Mur-
dock, 1976). After the best fit was determined, a χ 2 goodness-of-fit
statistic was calculated by combining bins with few responses (and
reducing degrees of freedom) so that the expected value of each bin
would exceed 5 (see Ratcliff & Murdock). Fits to nondistributional
data were determined by minimizing either least squares or weighted
least squares. Asymptotic standard errors (ASEs) for each parame-
ter estimate were obtained from the Hessian matrix of second par-
tial derivatives (Maindonald, 1984; Ratcliff & Murdock, 1976). All
analyses were grouped across subjects, though subject heterogene-
ity was presumably minimized by partitioning trials by recall total
before each analysis.

LATENCY DISTRIBUTIONS

If item strengths are equal, latencies will be distributed
as an exponential,

e�t/τ/τ , (1)

where the only parameter, τ , equals mean latency (Bous-
field & Sedgewick, 1944). Whereas the exponential dis-
tribution is monotonically declining, recall latency distri-
butions, in practice, sharply ascend during the first 1 sec
and then gradually decline throughout the remainder of
the recall period (Rohrer & Wixted, 1994). Rohrer and Wix-
ted demonstrated that this ascending arm results from the
pause that precedes recall, not from an initial increase in
rate of recall. In order to measure recall latency without
including this initiation time, the latencies can be fit to a
distribution that results when an exponential process is pre-
ceded by a roughly symmetric, unimodal distribution. If that
unimodal distribution is arbitrarily assumed to be a nor-
mal distribution, the resulting distribution is ex-Gaussian
(Hohle, 1965),

(2)

The normally distributed stage has mean µ and standard
deviation σ, and the exponentially distributed stage has
mean τ (see Rohrer & Wixted, 1994, for a complete de-

scription and derivation). Importantly, the sum of µ and τ
necessarily equals the total mean latency. Throughout both
the present article and in Rohrer and Wixted, estimates of
µ equaled about 1 sec, whereas estimates of τ varied from
about 3 to 12 sec, which is consistent with the view that µ
simply represents an initiation of the recall process. This
initiation time is not critical in the present study and the
term mean latency will hereafter refer to τ. In sum, the ex-
Gaussian is fit in order to obtain a more accurate measure
of the exponential decline in latency distributions.

With the introduction of variable item strengths, the
relative-strength model predicts that the tails of these la-
tency distributions will deviate from exponentiality. In
essence, the stronger-than-average items will be retrieved
sooner than average whereas the weaker-than-average items
will be retrieved later than average. In order to examine
these deviations, two 1,000-trial simulations of the relative-
strength model were performed, one with and one without
a recovery threshold. In the variable-strengths simulation,
the search set included 6 variable-strength items (0.4, 0.6,
0.6, 1.2, 1.2, 2.0) and all 6 items were recalled on each
trial. In the variable-strengths-with-threshold simulation,
the search set included 9 variable-strength items (0.4, 0.5,
0.7, 0.9, 0.9, 1.0, 1.0, 1.8, 1.8), but only the 6 strongest
items were above the threshold of 0.8. Each set of item
strengths has a mean strength of exactly 1 and a standard
deviation of about 0.5. More importantly, each scenario
yields an expected mean latency of exactly 8. Thus, even
though the search set sizes differ, the observable measures
of recall total and mean latency are equal.

Figure 1 presents the latency distributions given by the
variable-strengths and variable-strengths-with-threshold
simulations and the best fit exponential (Equation 1). As
shown, the best fit exponential underestimates the data
points for the first several bins and then overestimates
them for most of the remainder of the recall period. Finally,
though it cannot be seen in these plots, the curve slightly
underestimates the data very late in the recall period. Note,
however, that the inclusion of a recovery threshold almost
entirely nullifies the magnitude of this deviation, as revealed
by a comparison of the two plots. In effect, the very weak
items that would have otherwise been recalled late in the
recall period are no longer recalled, thereby decreasing the
variability in the observed recall latencies.

Results and Discussion
Figure 2 includes the latency distributions for recall to-

tals 3–7 and the best fitting ex-Gaussian distributions. Be-
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Table 2
Ex-Gaussian Fits of Latency Distributions (Figure 2)

Recall Initiation Mean Latency Goodness-of-Fit

Total (n) µ SE τ SE N χ 2 df

3 1.07 .08 5.58 .35 273 33.05* 13
4 1.05 .07 5.72 .27 480 18.87 17
5 1.16 .06 6.05 .26 560 25.68 17
6 1.25 .13 6.07 .30 510 38.95* 18
7 1.18 .07 6.22 .32 392 18.86 16

Note—Initiation and latency are given in seconds. *p < .05.
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cause the number of response latencies varied across re-
call totals (i.e., across plots), these distributions were plotted
as relative frequency distributions (i.e., as proportions) in
order to facilitate the visual comparison of the shapes.
Table 2 lists the absolute number of response latencies (N ),
the parameter estimates of µ and τ, and goodness-of-fit χ2

values for each recall total (n). The sum of the χ2 values
across recall totals was less than the corresponding sum
provided by the fits of the lognormal, the gamma, and the
Weibull, each with an added third parameter to account
for the time shift due to the initiation pause.

As reported in Table 2, the estimates of mean latency (τ)
equaled about 6 sec for each recall total. Thus, even though
latency is measured from the onset of the recall period, mean

latency was effectively independent of recall total. These
estimates did, however, increase slightly as a function of re-
call total at an average rate of 0.16 sec per extra word.
Though this increase is most likely real, the total increase
(about 0.6 sec) is an order of magnitude less than the values
themselves (about 6 sec). Thus, whereas recall total varied
by more than a factor of 2, recall latency varied by less than
10%. In contrast, a factor-of-2 increase in study total in-
creases latency by 100% (Rohrer & Wixted, 1994; see In-
troduction). In addition, the small increase in mean latency
as a function of recall total may simply have resulted from
the additional time needed to say each extra word aloud.

The deviation between the latency distributions in Fig-
ure 2 and the best fitting ex-Gaussians is very slight. In order
to examine whether any systematic deviations exist, the de-
viations for each bin were summed across recall totals 3–7
(i.e., across all 5 plots), yielding a total deviation for each
bin that was either positive (data > fit) or negative (data <
fit). For bins 1 through 30, respectively, where bin 1 repre-
sents the initiation pause, these deviation sums were

(+)++++ ����� ����+ ���+� +�+++ +++++.

Thus, there are long streaks or “runs” of deviations in the
same direction that are clearly systematic. In fact, there are
only 9 such runs, and a Wald-Wolfowitz runs test revealed
this number to be significantly lower than that expected by
chance (z � �2.31, p < .05, two-tailed). More importantly,
this systematic deviation is practically identical to that ob-
served in the relative-strength simulations in Figure 1.
Specifically, the exponential tail underestimates the first
few data points, overestimates the data until the tail reaches
the floor, and then underestimates the data thereafter.

In sum, the mathematical nature of the observed latency
distributions is consistent with the predictions of the relative-
strength model when a recovery threshold is incorporated.
In addition, the means of these distributions were effec-
tively independent of recall total, which is consistent with
the view that search set size remains roughly constant even
though the number of recoverable items can vary.

CUMULATIVE RECALL CURVES

If item strengths are equal, the growth in cumulative re-
call as a function of time is a cumulative exponential,

n(1�e�(t�c)/τ ), (3)

where c represents the initiation pause that precedes re-
trieval and τ equals mean latency (Bousfield & Sedgewick,
1944). Because a cumulative recall curve is actually a cu-
mulative latency distribution, the analyses of cumulative
recall and (noncumulative) latency distributions are some-
what redundant. Nevertheless, cumulative recall curves
are presented here so that the present experiment can be
easily compared with experiments by other researchers
who uniformly prefer the cumulative form (e.g., Bous-
field et al., 1954; Gronlund & Shiffrin, 1986; Payne, 1986;
Roediger, Stellon, & Tulving, 1977; Roediger & Thorpe,
1978).  Cumulative recall has not, however, been analyzed
after first partitioning trials by recall total.

Figure 3. Cumulative recall growth for recall totals 3–7 and the
best fitting cumulative exponentials (Equation 3).  The parame-
ter estimates are given in Table 3.
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As proven by Vorberg and Ulrich (1987), the relative-
strength model predicts that the best fit cumulative expo-
nential will initially underestimate the data points and
overestimate the data thereafter. Once again, however, the
presence of a recovery threshold reduces the extent of this
deviation. As an illustration, the cumulative recall curves
given by the variable-strengths and variable-strengths-
with-threshold simulations described in the last section
are shown in Figure 1 along with the best fitting cumula-
tive exponentials (Equation 3).

Results and Discussion
As shown in Figure 3, the cumulative recall curves for

recall totals 3–7 are well described by the cumulative ex-
ponential. Each fit accounted for more than 98% of the
variance, as listed in Table 3. This table also includes the
estimates of τ , each of which was roughly equal to the cor-
responding estimate of τ given by the ex-Gaussian fits of
latency distributions. Incidentally, because the data are plot-
ted cumulatively, the height of each data point must be
greater than the one that precedes it. This lack of indepen-
dence in cumulative data is responsible for the striking
smoothness of these curves.

As was true with the latency distributions, the cumulative
recall curves exhibited a small yet systematic deviation
from the equal-strength model that is consistent with the
prediction of the relative-strength model. As in the last sec-

tion, this was revealed by adding the deviations for each
bin across recall totals (i.e., across plots), thereby yielding
either a positive sum (data > fit) or negative sum (data <
fit). Because the cumulative data are not independent, a
statistical test on the number of runs like that performed
in the last section was not possible. Nevertheless, the devi-
ations for bins 5 through 10 were each positive, whereas the
deviations for bins 11 through 25 were each negative. Thus,
except for the first few and last few points, the best fit 
cumulative exponential roughly underestimated the first
10 bins and overestimated the next 15 bins. An identical
pattern was observed in the simulated cumulative recall data
in Figure 1. In summary, the results of the cumulative recall
analysis confirm those of the latency distribution analysis.

IRT GROWTH

Because the rate of recall declines throughout the recall
period, mean IRT (the average time between successively
recalled items) necessarily increases as a function of out-
put position. Thus, whereas latencies can be grouped
across output position, a meaningful analysis of IRTs re-
quires the partitioning of data by interresponse interval
(i). As a matter of notation, the IRT between the first and
second responses is designated as the first IRT (i � 1).
Thus, a trial with n responses yields n�1 IRTs. As first
noticed by Albert (1968), the partitioning of IRTs by both

Table 3
Cumulative Exponential Fits of

Cumulative Recall Total (Figure 3)

Recall Initiation Mean Latency

Total (n) c SE τ SE %VAF

3 .68 .14 5.71 .21 98.5
4 .83 .05 5.95 .07 99.8
5 .98 .07 6.21 .09 99.7
6 1.09 .06 6.21 .08 99.8
7 1.12 .05 6.37 .07 99.8

Note—Initiation and latency are given in seconds. %VAF, the percent-
age of variance accounted for by the fit.

Table 4
IRT Means (in Seconds) and Standard Deviations (in Seconds)

for Each Interresponse Interval

Recall Interresponse Interval (i)

Total (n) n�6 n�5 n�4 n�3 n�2 n�1

Means

3 2.63 6.34
4 2.15 3.20 5.46
5 1.68 2.31 3.65 4.93
6 1.38 1.70 2.35 2.89 5.97
7 1.24 1.56 1.53 2.07 3.01 5.45

Standard Deviations

3 3.21 5.83
4 1.89 2.66 5.20
5 1.61 1.99 3.69 4.39
6 0.61 0.92 2.68 2.83 5.55
7 0.64 0.92 0.92 1.78 2.92 4.52

Note—The i th interresponse interval occurs between responses i and i + 1.

Figure 4. Values of 1/interresponse time (IRT) given by the
variable-strengths simulation (row 5a, Table 1) and the variable-
strengths-with-threshold simulation (row 5b, Table 1). Each plot
includes the best fitting one-parameter lines (Equation 5).
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recall total (n) and interresponse interval (i) produces a
systematic pattern, and that pattern was observed in the
present data as well. As shown in Table 4, each of the last
IRTs (which are essentially equal) was greater than each
of the second-to-last IRTs, and each of the second-to-last
IRTs (which are themselves essentially equal) was greater
than each of the third-to-last IRTs, and so forth. Thus, mean
IRT depends on the number of not-yet-recalled items.

This pattern of IRT growth falls out of a more specific
prediction of the equal-strength model. If IRTi represents
the mean IRT for the interresponse interval i, then

IRTi � τ /(n�i), (4)

where n equals recall total and τ equals mean latency
(McGill, 1963). Thus, the last IRT (i � n�1) equals τ /1,

the second-to-last IRT (i � n�2) equals τ /2, and so on,
regardless of recall total (n).

The purposes of the present study are better served by
fitting an equation that is mathematically equivalent to
Equation 4,

1/IRTi � (n�i)/τ. (5)

If the 1/IRT values given by this equation are placed in re-
verse output position (i � n�1, n�2, . . . , 1), then the 1/IRT
values equal 1/τ, 2/τ, . . . , (n�1)/τ. Thus, the equal-strength
model predicts that values of 1/IRT, when placed in re-
verse output position, increase as a one-parameter line
that passes through the “origin” with slope 1/τ. As an il-
lustration, Figures 4 and 5 (which are discussed in more
detail below) each includes one of these one-parameter
lines.

When item strengths vary, this linearity in 1/IRT no
longer holds. As proven by Vorberg and Ulrich (1987), the
relative-strength model produces 1/IRT values that in-
crease with positive acceleration as a function of reverse
output position. (Technically, these authors proved that the
line segment between any 1/IRT value and the origin nec-
essarily lies above all of the intermediate points, a slightly
stronger claim than positively accelerated growth.) As an
illustration, Figure 4 includes the 1/IRT values given by the
variable-strengths and variable-strengths-with-threshold
simulations that were described in the section on latency
distributions. Once again, the presence of a recovery thresh-
old almost entirely nullifies the deviation caused by vari-
able strengths.

Results and Discussion
As shown in Figure 5, the increase in 1/IRT as a function

of reverse output position is well described by the predicted
one-parameter line with slope 1/τ (Equation 5). Because
the slopes of these lines were roughly equal, the estimates
of τ (mean latency) given by these fits were roughly inde-
pendent of recall total, as reported in Table 5. Thus, mean
latency and recall total were again independent.

However, these estimates of τ were slightly greater than
those given by the ex-Gaussian fits of latency distribu-
tions, especially for the recall total of 7. Because the pre-
dicted one-parameter lines have slope 1/τ , these larger-than-
expected τ values reflect smaller-than-expected slopes. An
examination of Figure 5 reveals that these smaller-than-
expected slopes are clearly the result of the last 2 points (i.e.,

Figure 5. 1/interresponse time (IRT) growth as a function of re-
verse output position for recall totals 3–7 and the best fitting one-
parameter lines (Equation 5). The estimates of � given by these
fits are given in Table 5 and the mean IRTs are given in Table 4.
Error bars represent ±1 standard error.

Table 5
One-Parameter Linear Fits of 1/IRT (Figure 5)

Recall Mean Latency

Total (n) τ SE %WVAF

3 5.94 .35 94.1
4 6.19 .18 97.0
5 6.58 .29 85.1
6 6.69 .20 98.5
7 6.87 .34 94.9

Note—Latency is given in seconds. %WVAF, the percentage of the
weighted variance accounted for by the fit where each weight equaled
the reciprocal of the variance for that data point.



196 ROHRER

interresponse intervals 1 and 2). That is, these 1/IRT val-
ues appear to be less than that expected given the trend es-
tablished by the other values. Notably, these apparently
distorted values correspond to the smallest mean IRTs
(Table 4).

One explanation for these smaller-than-expected 1/IRT
values is given by the model’s simplifying assumption of
instantaneous recovery. Recovery must require some small
amount of time, of course, but the assumption is effectively
inconsequential when measuring latencies that typically
average 5 sec or so. However, because the IRTs that pre-
cede the first few responses of a trial with at least 5 re-
sponses are typically less than 2 sec (Table 4), the assump-
tion of instantaneous recovery is more problematic. To
illustrate this potential problem, let each IRT � S � R,
where S represents the duration of the sampling stage and
R represents the constant duration of the recovery stage.
When IRTs are long and the sampling stage is much longer
than the brief recovery stage (say, S � 20R), the value of
1/IRT is about 95% as great as 1/S. However, when IRTs
are very brief (say, S � 4R), the value of 1/IRT is only 80%
as great as 1/S. Thus, as shown in Figure 5, 1/IRT values
for brief IRTs would be less than expected. This explana-
tion is consistent with the analyses of IRT distributions in
the next section.

In summary, the growth in mean IRT is, for the most 
part, solely determined by a single quantity—mean la-
tency—and this growth is independent of recall total. More
over, because mean latency can be calculated directly by
simply averaging response latencies, the single-parameter
lines in Figure 5 were, in a sense, predicted rather than fit.

IRT DISTRIBUTIONS

The equal-strength model predicts that IRTs will be dis-
tributed as an exponential,

e�t/IRTi/ IRTi , (6)

where IRTi again represents the mean IRT for interre-
sponse interval i (McGill, 1963). As before, IRT1 denotes
the mean IRT between the first and second response. Be-
cause IRTi increases with output position, as described in
the last section, IRT distributions cannot be meaningfully
collapsed across interresponse intervals.

Incidentally, the model’s prediction of both exponential
latencies and exponential IRTs appears contradictory be-
cause any response latency is a sum of IRTs, yet the sum
of exponentially distributed stages is not exponentially dis-
tributed. However, the equal-strength model predicts ex-
ponential latency distributions only when responses are
grouped across output position. If items are instead parti-
tioned by output position, the resulting latency distributions
are described by a particular type of generalized-gamma
distribution that is discussed in more detail in McGill
(1963). The take-home story can be described briefly: If
responses are collapsed across output position, latencies
are exponential and IRTs are not, but if responses are par-

titioned by output position, latencies are not exponential
and IRTs are.

Though IRT distributions given by the recall of items
from long-term memory (i.e., after a retention interval)
have not been reported, it is doubtful that IRTs will indeed
be exponential. First, the exponential is monotonically de-
clining, whereas RT distributions, in practice, begin with an
ascending arm. Second, the equal-strength model predicts
exponential IRTs only when the recovery process is instan-
taneous. However, if the duration of this recovery (R) is rela-
tively brief, constant, and independent of the sampling stage

Figure 6. Interresponse time (IRT) distributions for output posi-
tions 2–6 in trials with recall totals of 6 and the best fitting ex-
Gaussian distributions. The parameter estimates are given in
Table 6.
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(S ), then the resulting IRT distributions would exhibit a
brief ascent and a longer, exponentially declining tail.

When strengths vary, the relative-strength model pre-
dicts nonexponential IRT distributions (McGill, 1963;
Vorberg & Ulrich, 1987). For example, if two items have
already been recalled, the expected duration of IRT2, which
precedes the third item, depends on the strengths of the
not-yet-recalled items. Because words are recalled in dif-
ferent orders on different trials, the strengths of the not-
yet-recalled items will vary from trial to trial. Therefore,
the expected IRT will depend on which words have already
been recalled and will therefore also vary from trial to
trial. In short, the deviation from exponentiality in both IRT
distributions and latency distributions is caused by a vari-
ability in expected values. Therefore, variable item strengths
yield IRT distributions that deviate from exponentiality in
the same manner as latency distributions, as was shown in
Figure 1. Specifically, the best fit exponential initially un-
derestimates the data and then overestimates the data for
most of the remainder of the distribution tail.

Results and Discussion
After partitioning the trials by recall total (n � 3, 4, 5,

6, 7) and then partitioning IRTs by interresponse interval
(i � 1, . . . , n�1), 20 separate distributions were obtained
(2 + 3 + 4 + 5 + 6). For each distribution, IRTs were
grouped into 500-msec bins. As a representative sample,
the five IRT distributions for the recall total of 6 are shown
in Figure 6. All of the IRT distributions include an ascend-
ing arm; in fact, less than 1% of the IRTs were faster than
500 msec.

Each IRT distribution reached a peak at about 0.6 sec
and then declined thereafter (Figure 6). This pattern is con-
sistent with the view that each interresponse interval in-

cludes a sampling stage (S ) and a constant recovery stage
(R), as discussed in the previous section. If the recovery
stage is assumed to be normally distributed, then these IRT
distributions should be ex-Gaussian (Equation 2), which,
as noted above, describes the sum of an exponentially dis-
tributed stage and a normally distributed stage. For this
reason, the ex-Gaussian was fit to the observed IRT distri-
butions. Table 6 includes the parameter estimates and χ2

values given by these fits. Rather than use the parameters
µ and τ (Equation 2) and risk confusing these estimates
with those given by the ex-Gaussian fits of latency distribu-
tions, µ and τ were replaced by R and S, respectively. As
shown in Table 6, values of R remain constant while values
of S increase with output position. Though the ex-Gaussian
fits were consistent with the view that each interresponse
interval includes both a sampling stage of variable duration
and a recovery stage of constant duration, this interpreta-
tion should be considered tentative. All of the fits were
quite noisy and alternative explanations certainly exist.

With regard to the deviation predicted by variable item
strengths, the IRT distributions were consistent with those
given by the simulations, though the evidence is again not
overwhelming. As illustrated by the plots in Figure 6, the
exponential tails of the ex-Gaussian underestimated the
data for the first one third of the exponential tail and over-
estimated the data for the remainder of the tail.

One brief, final test of the relative-strength model con-
cerns the variability of the IRT distributions. When item
strengths are equal, the coefficient of variation (CV) for
each IRT—the standard deviation divided by the mean—
equals 1, as with any exponential distribution. Vorberg and
Ulrich (1987) proved that variable strengths necessarily
yield IRT CVs that are greater than 1. The values are still
very close to 1, however, and even a bimodal distribution

Table 6
Ex-Gaussian Fits of IRT Distributions for Each Recall Total

and Output Position (Figure 6)

Recall Interresponse Recovery Sampling Goodness-of-Fit

Total (n) Interval (i) R SE S SE N χ 2 df

3 1 .59 .05 2.03 .22 91 12.48 6
2 .57 .08 5.75 .61 91 4.43 11

4 1 .60 .04 1.54 .15 120 9.06 5
2 .58 .06 2.63 .25 120 15.01 8
3 .63 .13 4.86 .46 120 20.39 12

5 1 .60 .03 1.09 .11 112 4.65 2
2 .78 .08 1.53 .16 112 6.87 5
3 .67 .09 2.99 .30 112 32.44* 9
4 .84 .13 4.09 .41 112 16.98 10

6 1 .73 .05 .65 .08 85 1.56 2
2 .73 .06 .96 .12 85 .85 3
3 .58 .06 1.79 .20 85 5.40 4
4 .57 .08 2.31 .26 85 10.41 5
5 .79 .12 5.18 .57 85 7.25 10

7 1 .66 .10 .59 .13 56 3.29 1
2 .67 .10 .88 .15 56 3.91 1
3 .62 .06 .94 .14 56 2.73 2
4 .60 .06 1.47 .20 56 8.04 3
5 .58 .07 2.42 .33 56 5.62 5
6 .59 .22 4.88 .69 56 5.94 4

Note—Recovery and sampling are given in seconds. *p < .05.
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of item strengths yields CVs between 1 and 1.2. The IRT
means and IRT standard deviations for the present data are
presented in Table 4. In contrast to the prediction, the mean
CV was 0.85 and only 3 of the 20 exceeded 1.0. However,
given the view that each IRT includes a recovery stage of
constant duration, these CVs are underestimates. When
the CVs were recalculated by dividing the standard devi-
ations by the estimates of S (rather than S + R), the new
mean CV equaled 1.16 and 16 of the 20 values were greater
than 1.0.

In summary, the nature of IRT distributions is consistent
with the relative strength model, but the evidence is less
convincing than that given by the analyses of latency distri-
butions and IRT growth. In general, analyses of IRT distri-
butions are difficult because IRTs must be partitioned by
both recall total and output position, thereby requiring a
large number of response times. This probably explains
their absence from the literature.

GENERAL DISCUSSION

The existence of a recovery threshold provides one ex-
planation of why previous tests of the equal-strength model

have been successful despite the fact the item strengths
cannot be equal. As illustrated by the simulations in Fig-
ures 1 and 4, the deviation from the equal-strength model
that results from variable item strengths is essentially nul-
lified by a recovery threshold. In effect, the recovery thresh-
old prohibits the overt recall of weak, below-threshold
items that are sampled late in the recall period, thereby de-
creasing the variability in the strengths of the recalled items.
More generally, scenarios such as these illustrate a diffi-
culty that plagues model testing. Because one feature of a
model can either enhance or negate the effects of another,
any test of a model with two or more features can only be
tested as a whole. If the model fails that test, none of the
model’s features can be logically ruled out as being uniquely
responsible for the failure.

The use of curve fitting as a means to “rule in” a model
is an often-abused methodology, but the tests of the relative-
strength model presented herein avoid many of the usual
pitfalls. First, the model is quite simple. If the brief, 1-sec
pause that precedes recall is ignored, both latency distribu-
tions (noncumulative or cumulative) and mean IRT growth
can be described by a single parameter—mean latency (τ).
Second, the parameter estimate of mean latency has a psy-
chological interpretation. If an experimental manipulation
affects mean latency, then search set size must have in-
creased as well. Third, and most importantly, the parame-
ter estimate of mean latency also has an empirical meaning.
That is, mean latency can be directly calculated by simply
averaging response latencies; for the data described above,
mean latency equaled about 6 sec for each recall total.
Therefore, the functions shown in Figures 2, 3, and 5
could have been plotted without first fitting them to the
data. In short, the model predicts both the qualitative and
quantitative nature of latency distributions and mean IRT
growth.

The 16-Word Experiment
Because the experiment described herein included only

one study list length, the generalization of these findings
to other list lengths warrants consideration. The most com-
monly used list lengths range from only 3 words—as in the
classic proactive interference experiments—to as many as
15 or 20 words (though much longer lists have been used).
Thus, the 8-word list used in the present experiment lies
roughly in the middle of this range. Of course, it makes lit-
tle sense to examine the independence of mean latency and
recall total for 3-word study lists because so few recall to-
tals are possible. There is, however, good reason to extend
the present analyses to longer list lengths.

Figure 7. Latency distributions collapsed across recall totals for
the 8- and 16-word experiments and the best fitting ex-Gaussian
(Equation 2). The parameter estimates are given in Table 7.

Table 7
Ex-Gaussian Fits of Latency Distributions Collapsed Across Recall Total

for the 8-Word and 16-Word Experiments (Figure 7)

Study Initiation Mean Latency Goodness-of-Fit

Total µ SE t SE N χ 2 df

8 1.12 .03 5.98 .12 2,594 86.53* 25
16 1.10 .04 11.11 .26 1,898 95.83* 38

Note—Initiation and latency are given in seconds. *p < .05.
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Therefore, an additional 25 subjects were tested with 16-
word study lists. Other than a longer recall period (45 sec)
and fewer trials per subject (12), the procedure in this ex-
periment was identical to that in the 8-word experiment.
Subjects recalled an average of 6.33 words per trial, or
1,898 words in all, and 3.7% of these responses were errors.
Two brief analyses are presented here. Latencies are ana-
lyzed when trials are grouped across recall total, as in
Rohrer and Wixted (1994), and when trials are partitioned
by recall total, as in the present study.

Figure 7 includes latencies collapsed across all possible
recall totals for both the 8- and 16-word experiments as
well as the best fitting ex-Gaussian distributions. These fits
closely resemble those observed in Figure 2. In addition,
the exponential tail of each best fit function slightly under-
estimates the first few data points and then overestimates
the data for most of the remainder of the tail. The same
pattern was observed in the latency distribution given by
the variable-strength-with-threshold simulation shown in
Figure 1.

Though the latency distributions given by the 8- and 16-
word experiments are both described by the same func-
tion, their means differed considerably. As listed in Table 7,
both estimates of initiation time (µ) equaled about 1 sec,
whereas the estimate of mean latency (τ) for the 16-word
experiment was almost double that for the 8-word experi-

ment—11.11 versus 5.98. Of course, subjects in the 16-word
experiment had a longer recall period—45 versus 30 sec—
yet an examination of the latency distributions in Figure 7
reveals that the rate of recall for both groups of subjects
had essentially reached that floor by the end of the recall
period. Besides, the increase in mean latency with longer
study lists is both a robust and unsurprising effect that has
previously been established (see Introduction).

In keeping with the findings of the 8-word experiment,
mean latency and recall total were also effectively indepen-
dent in the 16-word experiment. As listed in Table 8, esti-
mates of mean latency given by fits of the ex-Gaussian for
recall totals 4–12 are roughly constant. (These latency dis-
tributions for these recall totals were the only ones with more
than 75 responses.) As in the 8-word experiment, mean la-
tency increased by an average of about 200 msec per extra
study word. Of course, as noted earlier, greater recall totals
require subjects to voice more words aloud. Perhaps not co-
incidentally, 200 msec is approximately the time needed to
voice a monosyllabic word. In short, the independence of
mean latency and recall total appears to hold across a rela-
tively wide range of recall totals. As noted earlier, this inde-
pendence is perhaps counter to the natural intuition because
latency is measured from the beginning of the recall period.

Finally, a comparison of the results for the two experi-
ments illustrates an intriguing prediction of the model. As

Table 8
Ex-Gaussian Fits of Latency Distributions for 16-Word Experiment

(Figure 8)

Recall Initiation Mean Latency Goodness-of-Fit

Total (n) µ SE τ SE N χ 2 df

4 1.02 .16 10.12 .89 132 20.07 13
5 1.16 .08 9.20 .67 190 20.97 15
6 1.18 .11 10.64 .64 282 29.57 21
7 0.99 .12 10.69 .58 350 33.72 23
8 0.99 .15 11.78 .80 224 25.77 20
9 1.08 .15 12.30 .90 189 25.55 18

10 1.65 .35 11.77 1.09 130 10.89 14
11 1.39 .36 12.59 1.31 99 12.07 11
12 1.20 .19 10.95 1.20 84 12.07 11

Note—Initiation and latency are given in seconds.

Figure 8. Mean latency (�) as a function of recall total for both the 8- and 16-
word experiments (Table 8). Error bars represent ±1 standard error.
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shown in Figure 8, mean recall latency is determined by
study total, not recall total. These findings contrast with
the deeply held intuition that the time required to recall a
set of items is determined by the number of words that
must be spoken. In addition, these findings are not easily
explained by any theory that construes recall total as a
measure of search set size.

Summary
Three primary findings have been reported. First, the pri-

mary heuristic value of the equal-strength model, its inter-
pretation of mean latency as a measure of search set size,
was seen to be effectively retained when the assumption of
equal item strengths was relaxed. As illustrated in Table 1,
the varying of item strengths has only a small effect on
mean latency and, because mean strength can only increase
with variability (see Appendix), relative comparisons of
mean latency remain relatively stable. Second, the means
and distributions of both latencies and IRTs were shown
to be quite adequately described by the relative-strength
model when a recovery threshold is present. Third, the
partitioning of trials by recall total in both the 8- and 16-
word experiments revealed that mean latency was roughly
proportional to list length yet independent of recall total.

Theoretically, all three of the findings are predicted by
a simple two-stage model of free recall. According to the
model, a search set composed of all study items is sam-
pled according to the relative-strength rule until all items
are found, and a sampled item is recovered into conscious-
ness only when its absolute strength exceeds a fixed thresh-
old. In short, the retrieval of an item from long-term mem-
ory is governed by both its relative and absolute strength.
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APPENDIX

This proof shows that, for a search set with N items, mean la-
tency is minimized when each item has the same strength. Ac-
cording to the variable-strength model, the probability of sampling
item i equals si /∑ sj (see Introduction). Therefore, τ i, the expected
latency of item i, equals the reciprocal of this ratio (∑ sj /si ),
when latency is measured in samples. Thus, if s equals the mean
strength,

mean latency (τ) = {∑[(∑ sj) /si]}/N

= {∑[(Ns) /si]}/N

= ∑(s/si). (A1)

If the strengths do not vary (all si � s), then Equation A1 can be
simplified as follows.

mean latency (τ) � ∑(s/s)

� N. (A2)

Therefore, in order to show that mean latency is minimized when
item strengths are constant, it is sufficient to show that Equa-
tion A1 > Equation A2, or

∑ (s/si) > N,

∑ [(si�di) /si] > N where deviation di � si�s,

∑ (1�di /si) > N,

∑ (1)�∑(di /si) > N,

N�∑ (di /si) > N,

∑ (di /si) < 0,

∑ [di /(s � di)] < 0. (A3)

The summation in Equation A3 can be written as the sum of
three summations—one for positive di , one for negative di , and
one for zero di, giving

∑ [di / (s + di)] + ∑ [di / (s + di)] + ∑ [di /(s + di)] < 0,
di>0 di<0 di�0



THE STRENGTH OF A MEMORY TRACE 201

∑ [di /(s + di)] + ∑ [di / (s + di)] + 0 < 0,
di>0 di<0

∑ [di / (s + di)] � ∑ [ | di | / (s� | di | )] < 0 
di>0 di<0

because di = �| di | for di < 0,

∑ [di /(s + di)] < ∑ [ | di | / (s� | di | )]. (A4)
di>0 di<0

Thus, if Equation A4 is true, the desired result is obtained. The
left side of Equation A4,

∑ [di /(s + di)]
di >0

< ∑ (di /s)
di>0

� [∑ (di )] /s
di>0

� [∑ | di | ] /s because ∑di � 0
di<0

� ∑ ( | di |/s)
di<0

< ∑ [ | di | /(s�| di | )].
di<0

Thus, Equation A4 is true. For N items within a search set, mean
latency (τ) is minimized when each item has the same strength.
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