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Major and trace elemental concentrations as well as Sr and Pb isotopic data, obtained
for 41 plutonic samples from the Coast Mountains Batholith ranging in age from ~ 108
to ~ 50 Ma, indicate that the source regions for these rocks were relatively uniform and
typical of Cordilleran arcs. The studied rocks are mineralogically and chemically
metaluminous to weakly peraluminous and are mainly calc-alkaline. Initial whole-rock
873r/%Sr ratios range from 0.7035 up to 0.7053, whereas lead isotopic data range from
18.586 to 19.078 for **Pb/***Pb, 15.545 to 15.634 for **’Pb/***Pb, and 37.115 to
38.661 for 2°Pb/***Pb. In contrast to these relatively primitive isotopic data, & 80
values for quartz separates determined for 19 of the samples range from 6.8 up to
10.0%o. These & '®0O values preclude the possibility that these melts were exclusively
generated from the Mesozoic mantle wedge of this continental arc, just as the Sr and Pb
data preclude significant involvement of an old (Precambrian) crustal/mantle
lithospheric source. We interpret the high 8 80 component to represent materials
that had a multi-stage crustal evolution. They were originally mafic rocks derived from
a circum-Pacific juvenile mantle wedge that experienced a period of near-surface
residence after initial crystallization. During this interval, these primitive rocks
interacted with meteoric waters at low temperatures, as indicated by the high & 80
values. Subsequently, these materials were buried to lower crustal depths where they
remelted to form the high 8 '"®*0 component of the Coast Mountains Batholith. This
component makes up at least 40% (mass) of the Cretaceous through Eocene batholith in
the studied area. The remainder of the source materials comprising the Coast
Mountains Batholith had to be new additions from the mantle wedge. A prolonged
period of contractional deformation beginning with the Early Cretaceous collisional
accretion of the Insular superterrane is inferred to have been responsible for
underthrusting the high & %0 component into the lower crust. We suggest that mafic
rocks of the Insular superterrane (e.g. Alexander—Wrangellia) are of appropriate
composition, and were accreted to and overthrust by what would become the Coast
Mountains Batholith just prior to initiation of magmatism in the region.

Keywords: Insular superterrane; lithospheric column; Coast Mountains Batholith

Introduction

Primary subduction-related basaltic magmas form by a combination of adiabatic and water
flux melting in the mantle wedge above the downgoing slab (Gill 1981; Arculus 1994,
Grove et al. 2003). Mantle-derived melts are modified in the upper plate via remelting,
fractionation, assimilation, and mixing with upper plate melts (Petford and Atherton 1996;
Dufek and Bergantz 2005; Annen et al. 2006). Petrologic, geochemical, and isotopic
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variations of arc magmas, particularly those measured transverse to the arc trends
(e.g. Kistler and Peterman 1978), are commonly ascribed to changes in the age,
composition, and relative abundance of deep crustal or upper-mantle source rocks
(DePaolo 1981; Kistler 1990; Chen and Tilton 1991; DeCelles et al. 2009).

In this study, we present new major and trace element as well as strontium, lead, and
oxygen isotopic data from two transects across the Coast Mountains Batholith of
west-central British Columbia, Canada. These geochemical data were acquired in
conjunction with companion U—-Pb geochronologic (Gehrels et al. in press) and Nd
isotopic (Girardi et al. 2009) studies with the goal of constraining the compositional
evolution of the arc lithospheric column, including source regions, of the Coast Mountains
Batholith through time. We use elemental and isotopic data to argue that in addition to
mantle-derived magmas, the arc had significant input from a high & "0 component, which
we interpret to represent tectonically underplated mafic crust of the Insular superterrane.
This interpretation underscores the significance of subduction erosion/tectonic under-
plating processes in continental subduction systems and their role in arc magmatism.

Background geology

The Coast Mountains Batholith of west-central British Columbia comprises large,
elongate coast-parallel intrusive belts (Barker ef al. 1986; Figure 1). These intrusives can
be divided into five groups based on geography and age of intrusives similar to the
designations of van der Hayden (1992). From west to east, these intrusive belts include the
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western middle Cretaceous intrusives, the Ecstall-equivalent intrusives, the Coast Shear
Zone (CSZ) intrusives, latest Palaeocene—Eocene intrusives, and the eastern Late
Cretaceous intrusives. Also present within the map area are both western and eastern Late
Jurassic and Miocene intrusives. Data from these intrusive suites are not included in this
study due to their controversial and potentially unrelated tectonic setting.

The Coast Mountains Batholith straddles the boundary between the Insular and
Intermontane superterranes (Monger et al. 1982). The CSZ is one of several northeast
dipping, southwest vergent ductile shear zones that accommodated coast-normal
contraction during the middle and Late Cretaceous through Palaeocene (Gehrels and
Saleeby 1987; McClelland et al. 1992; Klepeis et al. 1998; Crawford et al. 2000; Rusmore
et al. 2000). Contemporaneous with Coast Mountains arc magmatism, the rocks within
and surrounding the study area experienced dextral transpression during the Late
Cretaceous (Andronicos et al. 1999; Hollister and Andronicos 2006), and massive
extension and exhumation during the latest Late Cretaceous through early Eocene.

Plutonic rocks sampled for this study are intermediate in composition, ranging from
tonalites to granites. These rocks are, however, very homogeneous at the outcrop scale.
The CSZ intrusives represent a major exception to this generalization as more than half of
all exposures exhibit strong subsolidus fabrics with alternating mafic and leucocratic
selvages (e.g. Ingram and Hutton 1994). For this study, these intrusives were sampled in
areas least affected by shearing (Andronicos et al. 2003; Rusmore et al. 2005).

Analytical methods
Major and trace elements

The concentrations of major elements were determined at Macalester College using a
Philips PW-2400 X-ray fluorescence spectrometer with Rh-anode, end-window X-ray
tube, and Philips Super-Q analytical software. Sample preparation and analytical
techniques conform to those described by Vervoort et al. (2007).

Trace element concentration analyses were conducted at the Department of Geological
Sciences, University of Saskatchewan, Canada, by means of inductively coupled plasma
mass spectrometry (ICP-MS). Powdered rock samples were prepared by the HF—HNO;5
digestion procedure, where approximately 100 mg of sample was dissolved in a = 10ml
mixture consisting of equal amounts of double-distilled HF (48-51%) and of 16 N HNO;
placed on a hot plate at 100—150°C for 3—-6 days. Solutions were evaporated and the
samples were redissolved in ~2.5ml of 8 N HNO; and diluted by adding ~ 100 ml of
Milli-Q water. Samples were analysed on a SCIEX ELAN model 250 ICP-MS following
the techniques of Jenner et al. (1990) and Longerich et al. (1990).

Radiogenic isotopes

All sample preparation and analysis for radiogenic isotopes were conducted at the
University of Arizona. Uncrushed, whole-rock samples used in this study were inspected
and cleaned to ensure that no portion of any sample contained pieces that came in contact
with the metal hammer during sample collection. Each sample was then powdered using
an alumina shatter box. Between 100 and 400 mg of sample powders were weighed, put in
Teflon beakers, and dissolved in mixtures of hot, concentrated HF—HNO;. High purity
12moll~ ' HCI, 16moll ! HNO3, and 28 mol 1"' HF acids from Seastar Chemicals,
Sydney, Canada, were used for all dissolutions and elemental isolations. Dilute solutions
of high purity acids were prepared with purified water (18 m{)) from a Millipore system.
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Elemental isolation was performed in a crown-ether-based Sr-Spec resin, with a
particle size between 100 and 150 wm (available commercially from Eichrom
Technologies, Darlen, IL, USA). Column loads were between 0.25 and 0.5ml.
The method involves passage of 1 ml of sample solution in 3.5mol1~ " HNO; medium
through the extraction column, which retains strontium. Rubidium and other matrix
elements are washed from the column leaving a pure strontium fraction on column.
The strontium is then stripped with a small volume of diluted nitric acid (0.05moll™"
HNO:3). Following strontium extraction, the column is treated with 2N HCI and lead is
then extracted with 8 N HCI. Following isolation of strontium and lead, each sample was
evaporated and redissolved in dilute (~ 1%) HNO;.

Strontium analyses were conducted on a Micromass Isoprobe, a multicollector
inductively coupled plasma mass spectrometer (MC-ICP-MS) following the procedures
described in detail by Ducea et al. (2009). Samples were analysed in solution with
measurements made in static mode where collectors were fixed to track masses 85, 86, 87,
and 88, simultaneously for strontium.

Washes from the cation column separation were used for separating Pb in Sr-Spec
resin (Eichrom, Darien, IL, USA) columns by using a protocol developed at the University
of Arizona. Samples were loaded in 8 M HNOj in the Sr-spec columns. Pb elution was
achieved via 8 M HCI. Lead isotope analysis was conducted on a GV Instruments
(Hudson, NH, USA) MC-ICP-MS at the University of Arizona (Thibodeau et al. 2007).
Samples were introduced into the instrument by free aspiration with a low-flow concentric
nebulizer into a water-cooled chamber. A blank, consisting of 2% HNOj3, was run before
each sample. Before analysis, all samples were spiked with a Tl solution to achieve a Pb/Tl1
ratio of = 10. Throughout the experiment, the standard National Bureau of Standards
(NBS)-981 was run to monitor the stability of the instrument.

All results were Hg-corrected and empirically normalized to Tl by using an
exponential law correction. To correct for machine and interlaboratory bias, all results
were normalized to values reported by Galer and Abouchami (2004) for the
National Bureau of Standards (NBS)-981 standard (*°°Pb/*°*Pb = 16.9405,
27pb/MPb = 15.4963, and ***Pb/**Pb = 36.7219). The internal error reflects the
reproducibility of the measurements on individual samples, whereas external errors are
derived from long-term reproducibility of NBS-981 Pb standard and result in part from the
mass bias effects within the instrument. In all cases, external error exceeds the internal
errors and is reported below. External errors associated with each Pb isotopic ratio are as
follows: **°Pb/***Pb = 0.028%, **"Pb/***Pb = 0.028%, and ***Pb/***Pb = 0.031%.

Oxygen isotopes

Oxygen isotopic data were collected at the University of Arizona with some duplicate
analyses completed on select samples in the stable isotope laboratory of the Department of
Earth and Planetary Sciences at the University of New Mexico. The data were generated
from quartz separates hand-picked from samples exhibiting negligible alteration of
feldspars, as determined through petrographic inspection. Quartz & 'O values were
generated by conventional techniques employing bromine pentafluoride (BrFs) as the
fluorinating agent. Three to eight milligrams of each sample were heated to ~650°C in
sealed nickel vessels for 6—10 h in the presence of excess BrFs to generate O,. The O, was
next reacted with hot platinized graphite to produce CO,. Calculated yields were typically
100 £ 5%. The isotopic composition of CO, was then measured on a Finnigan MAT Delta
S mass spectrometer. Samples were calibrated against in-house and public standards
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including GJP-16 which was analysed multiple times and processed in alternating
decomposition vessels to ensure consistent results for each part of the system. Analyses of
all samples were repeated two or three times on separate fractions of the same quartz
separates. The precision of the results was better than = 0.2%e.

Petrology and geochemistry
Petrology

The rocks from west of the CSZ are, in order of abundance, mostly granodiorites and
tonalites, are granular and coarse grained, and primarily consist of quartz, alkali, and
plagioclase feldspar. The most abundant mafic minerals are both Mg- and Fe-rich
hornblendes and biotite with accessory minerals that include apatite, epidote, titanite, and
zircon. In addition, Fe—Ti oxides are quite common in most of the samples, especially in
those comprising the western middle Cretaceous intrusives. Nearly all samples exhibit
limited amounts of late magmatic to high-temperature subsolidus deformation as
exemplified by undulatory extinction in quartz and minor sub-grain development along
quartz—quartz crystal boundaries.

The average modal abundance of quartz within the intrusive groups west of the CSZ is
33% for the Ecstall and 30% for the western middle Cretaceous. The crystals are usually
anhedral to subhedral (rounded or sub-rounded) with patchy and/or undulatory extinction.
Alkali feldspars (22 and 20%) form enclaves or clusters of large phenocrysts and are
dominantly orthoclase and microcline. Plagioclase (29 and 32%) is relatively fresh, with a
compositional range between An;4 and Ans4 or from oligoclase to andesine. Almost all the
crystals show polysynthetic twinning and oscillatory zoning. Hornblende (8 and 6%) is the
dominant mafic mineral, identified in every sample from west of the CSZ. Biotite (6 and
9%) crystals are tabular, subhedral to anhedral.

Samples of the Ecstall-equivalent intrusives, which include those from the southern end
of the Ecstall pluton (Hutchison 1982; Zen and Hammarstrom 1984; Butler et al. 2002), are
characterized by the presence of primary epidote. Epidote has a modal abundance of 2% or
less in all of the Ecstall-equivalent samples with crystal lengths less than 0.6 cm.

As with samples from the west, those from east of the CSZ exhibit similar
compositions; granodiorites and tonalities in addition to which there are several granites.
They are mostly coarse grained exhibiting porphyritic and seldom granitic textures.
The modal compositions of the eastern suite of samples are broadly similar to those from
the west with the most salient differences being greater modal abundances of quartz and
alkali feldspars at the expense of hornblende.

The average modal abundance of quartz in all samples from east of the CSZ is 34% for
the Eocene, 32% for the CSZ intrusive, and 35% for the Early Cretaceous. Most crystals
are anhedral, and are intergranular between larger feldspar crystals. Subsolidus
deformation (i.e. undulatory extinction and subgrain development) is observable in
nearly all samples, but is most strongly developed within samples from CSZ intrusives.
Alkali feldspars (23, 25, and 26%), which include microcline and orthoclase, are subhedral
to anhedral in all eastern intrusive suites. Some subhedral orthoclase crystals show
poikilitic texture in which small quartz, biotite, and opaques represent chadacryst
assemblages. Plagioclase feldspar (33, 34, and 31%) is characterized by compositions that
range from An; to An,g. Biotite (7, 6, and 8%) is the most common mafic mineral present
in all samples from east of the CSZ. Biotite occurs as subhedral crystals of considerable
length (up to 1.2cm). Hornblende, which is restricted to samples from the eastern Late
Cretaceous intrusives, is anhedral and has a modal abundance less than 1%.
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In some samples from the Eocene intrusives, trace amounts of small (<1 mm)
pyroxene (aegirine—augite) phenocrysts are observed, which are entirely shattered and
partially transformed by subsolidus alteration into epidote, chlorite and opaque, Fe-rich
oxides. Trace amounts of garnet were also observed in one sample from eastern Late
Cretaceous intrusives.

Elemental chemistry

The major elemental compositions of all groups of intrusives are presented in Tables 1(a)
(western) and 2(a) (eastern) and plotted in Harker diagrams in Figure 2. Additionally,
alumina saturation is illustrated for all samples in the A/NK—-A/CNK plot of Figure 3.
With rare exception, all samples analysed in this study are calc-alkaline and most are
metaluminous to weakly peraluminous. Collectively, all samples define typical elemental
trends on Harker diagrams with TiO,, Al,03, MgO, CaO, P,Os, FeO, (total Fe), and MnO
decreasing and K,O increasing with increasing silica. However, while most samples define
increasing concentrations of Na,O with increasing silica, the Ecstall intrusives define a
scattered but decreasing trend.

Trace elemental data are provided in Tables 1(b),(c) (western) and 2(b),(c) (eastern).
Incompatible-element plots normalized to mid-ocean ridge basalts (MORBs; Pearce 1983)
for all groups of intrusives are shown in Figure 4. They illustrate relatively minor
depletions of Ti and heavy rare-earth elements (HREEs), and enrichments in various
large-ion lithophile elements such as Ba, Th, and Rb, as well as LREEs. Light REE
enrichment and HREE depletions are common to most samples from both transects on
both sides of the CSZ, and do not exhibit a clear correlation with Eu anomalies (Figure 5).

Isotope geochemistry

Lead and strontium as well as oxygen isotopic ratios of whole-rock samples and quartz
separates, respectively, collected from the central Coast Mountains Batholith are given in
Table 3. Measured ®’Sr/*°Sr ratios were age-corrected using U/Pb zircon crystallization
ages determined on the same samples collected for geochemistry (Gehrels et al. in press)
and the elemental concentrations of Rb and Sr to calculate initial ratios. Initial *’Sr/*°Sr
ratios were determined for all 41 plutonic samples investigated in this study, and those
ratios range from 0.7035 to 0.7053, with an average of 0.7042.

Measured 206Pb/204Pb, 207Pb/204Pb, and 2°®Pb/2**Pb ratios were age-corrected using
available U/Pb zircon crystallization ages and the elemental concentrations of Pb, Th, and
U to calculate initial common lead ratios. Initial 206Pb/204Pb, 207Pb/204Pb, and 2°®Pb/?**Pb
ratios were determined for 40 out of the 41 plutonic samples investigated in this study and
those ratios range from 18.586 to 19.078 with an average of 18.825 for **°Pb/***Pb;, from
15.545 to 15.634 with an average of 15.582 for °’Pb/***Pb;, and from 37.115 to 38.661
with an average of 38.287 for 2**Pb/2**Pb.

Oxygen data were determined on 26 quartz separates of the 41 plutonic samples
investigated in this study and from each of the Mesozoic and Tertiary belts of magmatism
comprising the Coast Mountains Batholith. & '*0 values for the Coast Mountains Batholith
samples range from 6.8 to 10.0%¢ with an average of 8.4%o.

Compositional trends and variations
Geochemical variations

The petrography and major and trace elemental chemistry of all intrusive suites analysed
in this study suggest that the source melts and compositional diversification trends that
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Figure 2. Major elements Harker plots of wt% TiO,, Al,O3, MgO, CaO, Na,0, K,0, P,0s, FeOrt,
and MnO versus wt% SiO,.

produced the Coast Mountains Batholith melts were grossly similar throughout the history
and geography of this system. In particular, the well-defined, linear trends with substantial
overlap for all intrusive suites observed in Figures 2 and 3 suggest that the Coast
Mountains Batholith melts were all derived from broadly similar mafic crustal/lithospheric
sources. In addition, they support the assertion that these melts also experienced
comparable evolutions following extraction from their sources and limit the magnitude of
involvement of melts or assimilants with dramatically diverse origins. On average,
however, the eastern intrusive samples are slightly more silicic and peraluminous than
those from west of the CSZ. Trace elemental compositions are also strikingly similar
among the intrusive groups, where only Th exhibits consistent variability and to a lesser
degree Ti (Figure 4). In particular, Th is elevated for all samples from east of the CSZ
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Figure 3. A/CNK (Al,O05/(CaO + Na,O + K;0), mol%) versus A/NK (Al,05/(Na,O + K,0),
mol%) diagram for discriminating metaluminous, peraluminous, and peralkaline compositions.
Symbol designations match those from Figure 2.

relative to those from the west, but is most dramatically enriched in the CSZ and Eocene
intrusives. Combined, the minor variations of the major and trace elemental compositions
between the western and eastern samples likely reflect derivation of melts from greater
crustal depth with higher grade metamorphic mineral assemblages for the source region of
the eastern intrusives relative to the western intrusives (e.g. Figure 5). This results from
local Palacocene contraction and crustal thickening along the CSZ (Rusmore et al. 2001).
Most intrusive suites also exhibit a minor Ti depletion with the Ecstall-equivalent
intrusives representing the only exception. This likely reflects the slightly higher
proportion of modal hornblende within the Ecstall-equivalent intrusives.

In a similar geochemical study of the Coast Mountains Batholith, Crawford et al.
(2005) report major and trace elemental data from similar-age intrusives straddling the
CSZ in an area ~ 150km north of the northern transect investigated here. While their
sampling did include a number of more mafic bodies, including synplutonic dikes, for the
range of silica contents of the samples reported herein, there is almost complete overlap
(Figure 2). The petrogenetic model described by Crawford et al. (2005) involves the
melting of hydrated mantle with the modification of melts generated east of the CSZ by
lower crustal melts of either continental composition and/or amphibolitic hydrated basalt.
While data from this study support the interpretation that Coast Mountains Batholithic
magmas, as with most arc magmas, were generated through a combination of mantle and
lower crust-derived melts, they do not require or even strongly support a continental
affinity for that lower crust. This follows from the observed uniform elemental,
particularly trace elemental, compositions within and between individual intrusive groups
(Figures 2 and 4). The composition of potentially contributing sources is discussed further
in the next section. Mahoney et al. (in press) also report elemental and strontium isotopic
data for Late Jurassic through Eocene intrusives east of the CSZ in the region surrounding
Bella Coola and overlapping the eastern Dean—Burke Channel transect (Figure 1(b)) from
this study. Data from their study also overlap our data from the intrusions east of the CSZ,
which should not be surprising given that we have, in many cases, sampled the same
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Figure 4. Rock/mid-ocean ridge basalt (MORB; data from Pearce 1983) normalized diagrams for
the Coast Mountains Batholith intrusive groups.

intrusive bodies. They argue that the arc east of the CSZ underwent dramatic crustal
thickening during the Late Cretaceous followed by an equally dramatic crustal thinning
event, possibly associated with the delamination of a portion of the lower crust, during the
Palaeocene to Eocene. These interpretations are generally supported by data present in this
study, particularly the Late Cretaceous crustal thickening which can be documented on a
broader regional scale on both sides of the CSZ (e.g. Figure 5).

Isotopic variations

The first fundamental result provided by the isotopic dataset reported here is that variations
of the isotopic compositions of the Coast Mountains Batholith intrusives are minor with
respect to composition, time, and geographic position. Furthermore, when compared with
other Mesozoic batholiths of the North American Cordillera, the Coast Mountains
Batholith correlates well with those of the western or outboard portions inasmuch as they
are isotopically primitive with regard to radiogenic isotopes (e.g. Kistler and Peterman
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Figure 5. Euw/Eu” versus La/Yb correlation diagram for the Coast Mountains Batholith intrusive
groups. Dashed horizontal line at La/Yb = 10 corresponds with an approximate crustal thickness of
30-35km (Hildreth and Moorbath 1988). Symbol designations match those from Figure 2.

1978). Previous studies of the Coast Mountains Batholith (Magaritz and Taylor 1976,
1986; Barker et al. 1986; Arth et al. 1988; Samson et al. 1989, 1990, 1991a,b; Barker and
Arth 1990; Cui and Russell 1995a,b; Friedman et al. 1995; Thomas and Sinha 1999;
Mahoney et al. in press) have reported results similar to those reported herein. Clearly, the
bulk of this arc has primitive radiogenic isotopic compositions, suggesting that North
American lithosphere (mantle and crust) made only a relatively minor, if any contribution
in generating the Coast Mountains Batholith melts.

Radiogenic isotopic compositions for both Pb and Sr are relatively consistent in terms
of mean and variability (Figure 6(d),(f)). Eastern Late Cretaceous intrusives, however, do
exhibit consistently lower Pb and Sr isotopic compositions than all other intrusive suites
presented in this study. Slight variations in radiogenic isotopic compositions as a function
of geographic position, for example distance from the CSZ (Figure 6(g),(1)), likely reflect
the combined effects of spatial migration of magmatism through time combined with that
of the focus of contraction and crustal thickening. For example, the low overall Sr and Pb
isotopic compositions of samples from the eastern Late Cretaceous intrusives may reflect a
greater mantle-derived component as a result of subdued crustal interaction, as these melts
were emplaced through overall thinner crust ahead of Palacocene contraction in this part
of the Coast Mountains (Gehrels et al. 1992; McClelland et al. 1992; Journeay and
Friedman 1993; Rusmore et al. 2000, 2005). Oxygen isotopes exhibit no clear trend as a
function of time or geographic position with nearly the entire range of observed values
present from all intrusive suites on both sides of the CSZ (Figure 6(e),(h)).

A comparison of our data with that from other parts of the Coast Mountains Batholith
shows remarkable similarities. A plot of 2*’Pb/***Pb and ®’Sr/*°Sr against 2*°Pb/***Pb
(Figure 7(a),(c)) demonstrates significant overlap between the Coast Mountains Batholith
intrusives of this study and those of the southern Coast Mountains Batholith (Cui and
Russell 1995a,b).
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Oxygen isotopic data (quartz) from intrusives of the central Coast Mountains Batholith
range from 6.8 to 10.0%o, with a mean value of 8.4%o. No trends are apparent from these
data with respect to geographic position, age of intrusive body sampled, or composition
(e.g. wt% SiO,; Figure 6(b)). These data overlap with those of Magaritz and Taylor (1976)
from their zones I and I and from Gehrels and Taylor (1984) in the Ketchikan area, both to
the north of the study area reported on herein. These data also overlap with oxygen data
reported from the southern Coast Mountains Batholith (Magaritz and Taylor 1986).

A comparison of the strontium and oxygen data with the Peninsular Ranges batholith
of southern and Baja California (Taylor 1986) reveals partial overlap with the primitive
western Peninsular Ranges batholith (Figure 7(b)). However, several of the samples from
this study display higher oxygen values for samples with equivalent *’Sr/*°Sr; ratios from
the Peninsular Ranges batholith. Heavy oxygen in excess of the Peninsular Ranges
batholith trend is observed in four out of five of the intrusive belts from both sides of the
CSZ. The observation of excessively heavy oxygen signatures is relatively rare but is
observed elsewhere in the Cordillera. Barnes et al. (1990) report a similar heavy oxygen
excursion from the intrusives of the Klamath Mountains (Figure 7(b)). They argue that the
unique isotopic composition of the Klamath magmas arises from the assimilation of
metavolcanics and volcaniclastics with slightly elevated strontium isotopes (*’Sr/*°Sr;
~0.705) but very heavy oxygen (8 '*0 > 10.5%0).

In summary, Coast Mountains Batholith intrusive belts are characterized by relatively
uniform radiogenic isotopic compositions, internally and from one belt to the next,
regardless of petrologic composition, age, or geographic position. Slightly less radiogenic
compositions for the eastern Late Cretaceous intrusives likely reflect less interaction with
a crustal column that was thinner relative to those encountered by other intrusive suites
during magma ascent. Nevertheless, the Coast Mountains Batholith intrusives are overall
primitive, but isotopically slightly more evolved than typical island arcs, e.g. Lesser
Antilles arc (Figure 7(b)). Oxygen isotopes are particularly anomalous when compared
with the outboard portions (i.e. those parts with similar radiogenic isotopic compositions)
of almost every other Mesozoic to Cenozoic batholith in the North American Cordillera.
We believe that these data suggest a unique history to the source rocks of the Coast
Mountains Batholith.

Discussion

Elemental and isotopic data presented here demonstrate that there is a significant
mantle-wedge-derived component to the batholith, which is expected for any magmatic
arc. In addition, we identify a second, heavy oxygen component, whose origin is examined
in detail below.

The elevated quartz & '®0O values for the Coast Mountains Batholith samples (from 6.8 to
10.0%0) clearly suggest that the batholithic source(s) contains a significant fraction of rocks
that were previously at or near the surface of the Earth. Mafic rocks derived from partial

A
<

Figure 7. (a) Pb—Pb plot illustrating various tectonic fields after Zartman and Doe (1981) as well as
data from the southern CPC (Cui and Russell 1995a,b) and Wrangellia (Andrew and Goodwin
1989a,b). (b) Sr versus & '*O plot comparing data from the CPC with the Peninsular Ranges batholith
(Taylor 1986), the Lesser Antilles arc (Davidson and Harmon 1989), and the Klamath trend (Barnes
et al. 1990). (c) Sr versus Pb plot comparing data from the CPC with data from the southern CPC
(Cui and Russell 1995a,b) and Wrangellia (Andrew and Goodwin 1989a,b).
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melting of the mantle have a global average 6 '*0 = 5.7 = 0.3%0 (Mattey et al. 1994;
Harmon and Hoefs 1995), and even the most extreme crystal fractionation to a high-silica
rhyolite cannot increase that ratio by more than 1%o (Taylor and Sheppard 1986). Quartz &
'80 is higher by a few tens of per mille (~ 0.5%¢) compared with whole-rock values. Overall,
it has been established that any plutonic rock with quartz & '*0 > 7%o must be derived at
least in part from source rocks that were in contact with the hydrosphere at some point in
their past, i.e. rocks that have a supracrustal history. These numbers assume that the analysed
samples themselves experienced no hydrothermal or surficial alteration, or other
open-system disturbance subsequent to the crystallization of the original magmatic rock.
It is unusual for large volumes of crustal rocks to have 6 80 > 12-14%0 (Taylor 1986).
Mass balance is straightforward with respect to oxygen isotopes, given that almost all
minerals and rocks have about 50% oxygen by mass. The consequence is that a quartz &
80 = 8.4, the average of the 19 measurements presented in this study, requires significant
input from a crustal component, tens of per cent, depending on the & '*0 composition of that
component. The few measurements of quartz & 180 ~7%0 (Figure 7(b)), on the other hand,
are perfectly consistent with an unaltered mantle origin for the source rocks of the batholith
melts. We interpret that component to represent the lower crustal intrusions derived from
mantle wedge beneath the arc.

Using a conservative value of 8 "0 = 14%o for the near-surface component, and
intrusive volume data from the area (Gehrels e al. in press), we estimate that about
40-45% of the volume of the studied plutons had to be derived from this component with
elevated & '®0. This is significant in that it rules out an exclusively in sifu mantle-wedge-
derived origin for these giant arc-related intrusions, some of the largest individual plutons
in the world.

On an ¥’Sr/%°Sr versus & '*0 diagram (Figure 7(b)), the positive correlation commonly
seen between isotopes in Cordilleran batholiths (e.g. Taylor 1986) is evident; high & '*0
(10%0) values are associated with a minimal increase in ¥’Sr/*°Sr to about 0.7045.
The scatter observed in our data in this and other isotopic correlation diagrams might
indicate multi-component mixing of at least three contributors, as it is the case with other
batholiths (e.g. Ducea 2001). Of these various components, we can identify the most
significant contributors by mass: a low *’Sr/*°Sr, lead and & '®*O component as being
unambiguously a mantle component (the mantle wedge beneath the Mesozoic arc), and the
‘near-surface’, high 8 '"®*0 component. The high 8 '®*0 mass had to have been buried to
deep crustal levels before becoming a significant component in the mass of the batholith.

What makes the Coast Mountains Batholith particularly interesting is that high & '*O
values are found for rocks that have non-radiogenic Sr and Pb isotopes (as well as high engq
isotopes; Girardi et al. 2009). In order to explain the origin of this ‘surficial’ component,
one has to envision a crustal source rock that satisfies the following conditions: (1) it has to
be a mafic to intermediate material in order to generate an I-type calc-alkaline suite by
partial melting, (2) it has to be volumetrically significant, given the size of the batholith,
(3) it has to be primitive in radiogenic isotopic compositions (island arc, oceanic plateau,
etc.), and (4) it has to have experienced extensive low-temperature, near-surface
interactions with meteoric and/or sea water, and consequently is a wet source.

Petrogenetic and tectonic implications

The above discussion places constraints on the composition, origin, and evolution of the
source rocks that produced the melts of the Coast Mountains Batholith. We propose that
the bulk of the batholith’s lower crust evolved from a former large oceanic plateau
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or at least Jurassic, if not older, relict island arc within the Pacific realm. Radiogenic
isotopes, particularly common lead values, are more consistent with an island arc origin
than an oceanic plateau. Amphibolite is the most likely composition of a wet basalt or
basaltic andesite in the lower crust. There are, therefore, three potential origins for rocks
with this unique composition and evolution to have been positioned in the lower crust of
the Coast Mountains Batholith: (1) Jurassic and older arc rocks that were buried into a
lower crustal position by the accumulation of igneous and sedimentary strata,
(2) subduction erosion and underplating of accretionary prism and/or forearc blocks,
and (3) accretion and post-accretion contractional deformation and crustal thickening.

The possibility that the source rocks of the Coast Mountains Batholith were buried
Jurassic and older arc rocks may be a valid interpretation due to the presence of latest
Proterozoic through mid to late Palaeozoic intrusive bodies and orthogneisses present
within the study area (Boghossian and Gehrels 2000; Gareau and Woodsworth 2000;
Gehrels and Boghossian 2000). However, this seems unlikely due to the presence of these
units along with other Palaeozoic metasedimentary units at the surface today adjacent to
the middle to upper crustal (2—5kbar) intrusions of the Coast Mountains Batholith, as
much as 7—8kbar from the inferred depths of melt generation (Stowell and Crawford
2000; Brady, R. written communication, 2005).

Subduction erosion and underplating of forearc or accretionary prism blocks is also a
potentially valid interpretation since contractional deformation dominated the late Early
Cretaceous through earliest Tertiary arc at this latitude. Similarly, these tectonic features
are not known to be preserved for this arc during this time period. Subduction erosion of
the forearc may be an ideal mechanism responsible for at least some of the Coast
Mountains Batholith melts, particularly if the eroded forearc blocks comprise crustal
sections from outboard terranes such as Wrangellia. Similar to the Central American
example described by Goss and Kay (2006), the mafic lithologies and isotopic
geochemical compositions of Wrangellia (e.g. Figure 7(a),(c)) could produce the batholitic
melts (discussed further below). However, for such a mechanism to be solely responsible
for the generation of the Coast Mountains Batholith within the study area, it would require
multiple, discrete erosional events over the course of ~60 million years, a scenario that
seems unlikely given the volume of melt produced and the possibility of alternative, and
perhaps more plausible mechanisms.

Accretion and post-accretion contraction is, perhaps, the most appropriate mechanism
for emplacing large volumes of upper-crustal rocks at depth and within the region of melt
generation. The western Coast Mountains, which includes the Alexander and Wrangellia
terranes, is interpreted to have been juxtaposed with the eastern Coast Mountains through
a combination of sinistral translation and contraction during the Early to middle
Cretaceous (McClelland et al. 1992; Monger et al. 1994; Gehrels et al. in press).
Throughout the Coast Mountains are multiple individual faults/ductile shear zones,
forming a west-vergent thrust belt, that were active from the late Early Cretaceous to the
early Tertiary (Gehrels et al. 1992; McClelland et al. 1992; Journeay and Friedman 1993;
Monger et al. 1994; Andronicos et al. 1999, 2003; Rusmore et al. 2000; Stowell and
Crawford 2000). The magnitude of shortening accommodated by these west-vergent faults
is poorly constrained; however, exposed footwall blocks do yield peak metamorphic
pressures in excess of 7 kbar (Rusmore et al. 2005). In addition to the east of the Coast
Mountains was the east-vergent Skeena Fold Belt, active from the latest Jurassic to early
Tertiary, accommodating as much as 160 km of shortening (Evenchick 1991a,b, 2001).
Both systems of thrusts would have funnelled crustal rocks to depths in excess of 35 km
beneath the Coast Mountains Batholith triggering the kind of flare-up magmatism
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(cf. Ducea and Barton 2007) characteristic of the central Coast Mountains during the
middle Cretaceous through early Tertiary. More important, however, is the fact that the
composition of the rocks being emplaced within the region of arc melt generation was
compositionally appropriate to generate, not only the lithologies observed in the Coast
Mountains Batholith, but also the isotopic compositions. The Wrangellia terrane, in
particular comprises a large proportion of mafic volcanic rocks with isotopic geochemical
compositions that overlap those of the Coast Mountains Batholith (Barker ez al. 1986; Arth
et al. 1988; Andrew and Goodwin 1989a,b; Samson et al. 1989, 1990, 1991a,b; Barker and
Arth 1990; Lassiter et al. 1995; Figure 3(a),(c)). Hollister and Andronicos (2006) have
independently proposed a similar tectonic model based on geologic and seismic data
collected by project ACCRETE. The Central Gneiss Complex makes up the core of the
Late Cretaceous and Cenozoic sections of the batholith at the latitude of this study and
consists primarily of amphibolite (metamorphosed mafic volcanics) and metasedimentary
rocks (Armstrong and Runkle 1979; Hollister and Andronicos 2000). The Central Gneiss
has been suggested as the source for some of the intrusions of the Coast Mountains
Batholith (e.g. Smith et al. 1979) and may be a part of this underthrust domain, which has
subsequently been exhumed at the surface.

The existence of a regionally extensive high & "®*0 component in the source of what is
from a radiogenic isotope perspective a primitive magmatic arc (Samson ef al. 1989, 1990,
1991a,b; Samson and Patchett 1991) has some important implications for the assembly of
granitic crust in general. It is well established that making granitoids is a two-step process
that requires either dramatic fractionation of mantle-derived basaltic melts or remelting of
underplated or intruded mantle-derived melts (Rudnick 1995). The details of the second
stage process are largely unresolved, but it has been proposed that remelting of newly
underplated/intruded basalt in the lower crust can be responsible for the two-step process
of generating granitoids (e.g. Atherton and Petford 1993). The Coast Mountains Batholith
could be a perfect candidate for this process, given that most of its rocks have Phanerozoic
Nd crustal ages (Samson ef al. 1989, 1990, 1991a,b; Samson and Patchett 1991). However,
the presence of the high & "0 component in the batholith precludes this simple two-step
process (melting in the mantle, basalt ponding in the lower crust, and remelting of basalts
to make granitoids). It shows that even in the case of one of the most primitive Cordilleran
batholiths (as documented by radiogenic isotopes), tectonic processes such as crustal
thickening represent an integral part of arc evolution.

Conclusions

The petrologic, geochemical, and radiogenic isotopic composition of the Coast Mountains
Batholith of west-central British Columbia, Canada, is similar to that of the western
portions of the other North American Cordilleran batholiths. The various intrusive groups
investigated and reported upon herein are characteristically calc-alkaline, metaluminous to
weakly peraluminous, and isotopically juvenile. Oxygen isotopes, however, are
uncharacteristically heavy for their radiogenic isotopic compositions, an observation
that is not related to post-emplacement alteration as demonstrated by the petrographic
characteristics of the analysed samples. Anomalously heavy oxygen compositions are
observed in most of the intrusive groups investigated in this study suggesting a
process/source that is both regionally and temporally extensive. Furthermore, they
preclude the possibility that the Coast Mountains Batholithic melts were exclusively
generated from the Mesozoic mantle wedge, just as the Sr and Pb data preclude significant
involvement of an old (Precambrian) crustal/mantle lithospheric source. We interpret the
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high & 'O component to represent materials that had a multi-stage crustal evolution. They
were originally mafic rocks derived from a circum-Pacific juvenile mantle wedge that
experienced a period of near-surface residence after initial crystallization. During this
interval, these primitive rocks interacted with meteoric waters at low temperatures, as
indicated by the high 8 '®0 values. Subsequently, these materials were buried to lower
crustal depths where they remelted to form the high & '®0O component of the Coast
Mountains Batholith. A prolonged period of contractional deformation, beginning with the
Early Cretaceous collisional accretion of the Insular superterrane, is inferred to have been
responsible for underthrusting the high & 80 component into the lower crust. We suggest
that rocks of the Insular superterrane (e.g. Alexander—Wrangellia) are of ideal
composition, and were accreted to and overthrust by what would become the Coast
Mountains Batholith just prior to initiation of magmatism in that region.
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