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The attention/likelihood theory (ALT; M. Glanzer & J. K. Adams, 1990) and the retrieving effectively
from memory (REM) theory (R. M. Shiffrin & M. Steyvers, 1997) make different predictions concerning
the effect of list composition on word recognition. The predictions were empirically tested for two-
alternative forced-choice, yes–no, and ratings recognition tasks. In the current article, the authors found
that discrimination of low-frequency words increased as the proportion of high-frequency words studied
increased. The results disconfirm the ALT prediction that recognition is insensitive to list composition,
and they disconfirm the predictions of the REM model described by R. M. Shiffrin and M. Steyvers
(1997). The current authors discuss a slightly modified version of REM that can better predict our
findings, and we discuss the challenges the present findings pose for ALT and REM.

For recognition memory, “mirror effects” are common (Glanzer
& Adams, 1985): If A is a better-recognized stimulus class than B,
then A items are more likely than B items to be recognized when
studied (e.g., a hit) and less likely than B items to be recognized
when not studied (e.g., a false alarm). Explaining mirror effects
has become a central goal for memory researchers because they
were difficult or impossible to explain by many older theories of
recognition (Glanzer & Adams, 1985, 1990), and several more
recent theories of memory predict mirror effects (Dennis & Hum-
phreys, 2001; Estes, 1994; Glanzer & Adams, 1990; McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997). The word-frequency
effect (WFE) is a mirror effect; low-frequency (LF) words are
more likely than high-frequency (HF) words to be recognized
when they had been studied and less likely to be recognized when
they had not been studied (on average, Schulman, 1967; Shepard,
1967; but see Wixted, 1992). Because the WFE is one of the most
robust mirror effects (Glanzer & Adams, 1985), predicting it has
become an important goal of most recent theories of recognition
memory (Dennis & Humphreys, 2001; Estes, 1994; Glanzer &
Adams, 1990; McClelland & Chappell, 1998; Shiffrin & Steyvers,
1997).

In this article, we directly address the question of how the
proportion of HF words studied (vs. LF words), referred to here as
a list-composition manipulation, affects recognition.1 It is well
documented that changes in list composition have no qualitative
effect on the WFE: LF words are better recognized than HF words

for both between- and within-list manipulations of word frequency
(e.g., Gorman, 1961; Schulman, 1967; Shepard, 1967). However,
it is also important to know how mirror effects are quantitatively
affected by different factors (Hintzman, Caulton, & Curran, 1994).
For example, a theory can predict a change in discrimination for
HF and/or LF words that preserves the WFE, a WFE can be
observed, and the theory can be disconfirmed because patterns of
“old” responses do not conform to its predictions.

Thus, the prior findings showing no qualitative change in the
WFE as a function of list composition only minimally constrain
theory. In one experiment, for example, Dorfman and Glanzer
(1988; also see Clark & Burchett, 1994) asked subjects to make
lexical decisions to mixed lists of HF and LF words that varied in
their composition. Later, a surprise yes–no recognition test was
given for the words appearing during the lexical decision trials.
Dorfman and Glanzer found that LF words were recognized better
than HF words regardless of list composition. Given this finding,
one might be tempted to conclude that list composition does not
affect the WFE for recognition. However, Dorfman and Glanzer
also found that WFE increased as the proportion of HF words
studied increased. Thus, the WFE does not appear to be qualita-
tively affected by list composition, but it may be quantitatively
affected.

Despite its importance to understanding recognition, little atten-
tion has been paid to how list composition quantitatively affects
the WFE. Directly addressing this question is now timely because
two theories of recognition memory, the retrieving effectively
from memory theory (REM; Shiffrin & Steyvers, 1997) and the

1 We use the term “list composition” in this article to refer to a manip-
ulation of the percentage of HF words studied versus the percentage of LF
words studied for lists of constant length. It is much more compact than a
manipulation of “the percentage of HF words studied versus the percentage
of studied LF words,” although we sometimes use the more elaborate
description when needed for clarity. There are many types of list-
composition manipulations, however, and we trust that our use of the
general term in this article will not be confused with other types of
list-composition manipulations (e.g., list strength, semantic associates).
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attention/likelihood theory (ALT; Glanzer & Adams, 1990; Glan-
zer, Adams, Iverson, & Kim, 1993) make different qualitative
predictions about the outcome: REM predicts a list-composition
effect, but ALT does not. To understand these predictions, how-
ever, it is necessary to describe the ALT and REM accounts of the
WFE in detail, and this will also allow us compute their predic-
tions. After doing so, we present three experiments. Experiment 1
uses a two-alternative forced-choice (2AFC) recognition proce-
dure, which allows for a relatively pure view of how list compo-
sition affects the ability to discriminate studied and unstudied
words. Experiments 2A and 2B use yes–no and confidence ratings
procedures in an attempt to generalize the findings from Experi-
ment 1 to these common recognition procedures.

The Mirror-Patterned WFE for 2AFC Recognition

For 2AFC recognition, two items are presented and the subject’s
task is to determine which item was studied. If P(x, y) is the
probability of choosing word x over word y and words are HF or
LF, then there are six independent types of comparisons that can be
made P(HF-old, HF-new), P(HF-old, LF-new), P(LF-old, HF-
new), P(LF-old, LF-new), P(LF-old, HF-old), and P(HF-new,
LF-new). For standard comparisons, a target (an old item) and a
foil (a new item) are presented, and the following is a mirror-
patterned WFE for the four standard comparisons:

P(HF-old, HF-new) � P(HF-old, LF-new), (R1)

P(LF-old, HF-new) � P(LF-old, LF-new),

P(HF-old, HF-new) � P(LF-old, HF-new), and

P(HF-old, LF-new) � P(LF-old, LF-new).

On null-comparison test trials, two foils or two targets from
different stimulus classes are presented, and this is a mirror-
patterned WFE for the two null comparisons:

P(LF-old, HF-old) and P(HF-new, LF-new) � .50. (R2)

Thus, old words are chosen more often than new words, HF-new
words are chosen more often than LF-new words, and LF-old
words are chosen more often than HF-old words. Taken together,
R1 and R2 comprise the mirror-patterned WFE for 2AFC
recognition.

Assume there is a value of a random variable associated with
each test item. If a 2AFC is based on comparing these values such
that the item associated with the greatest value is chosen, then R1
and R2 indicate that the mean values for the random variable
associated with new and old HF and LF words conform to the
following ordering:

�(LF-new) � �(HF-new) � �(HF-old) � �(LF-old). (R3)

For example, if the recognition decision is based on the levels of
“familiarity” of the test items, then LF-new words are the least
familiar and LF-old words are the most “familiar” (on average).

The REM Account of the WFE
(Shiffrin & Steyvers, 1997)

REM predicts that LF targets are more likely than HF targets to
be correctly recognized because LF targets match or activate to a

greater degree than HF targets their own episodic memory traces.
That is, LF targets are more familiar than HF targets on average.
REM predicts that LF foils are less likely than HF foils to be
incorrectly recognized because HF foils tend to spuriously match
traces of other words to a greater degree than LF foils. That is,
there is more “noise” in the output from memory when an HF foil
is tested versus when an LF foil is tested. Therefore, HF foils are
more likely than LF foils to be incorrectly called “old.” Together
these assumptions satisfy R3. Although these assumptions are
straightforward, they can only properly be understood within the
context of the REM framework.

Specifically, REM assumes that generic knowledge is stored in
lexical/semantic images, and every known word has a correspond-
ing lexical/semantic image consisting of item (wi) and context (wc)
features. Lexical/semantic features represent the orthographic,
phonemic, and semantic properties of a word. Features are integers
that vary in their frequencies of occurrence. The features compris-
ing lexical/semantic images are determined by drawing integers
randomly from a geometric distribution. This occurs independently
for each feature. Thus, the probability that feature value, j, is
encountered in a given feature location of a lexical/semantic image
is:

P�V � j� � �1 � g�j�1g, (1)

where j � 1, 2, 3, and so forth.
The g parameter determines the mean and variability of feature

values. Figure 1 shows the geometric distributions for two differ-
ent values of g, and it shows that the features will tend to be
integers with relatively small values and with relatively little
variability when sampled from a geometric distribution defined by
a relatively high g value. Conversely, when g is relatively low, the
features that represent a word are more varied and have a greater
mean value. For this reason, words constructed by randomly
sampling from a geometric distribution defined by a relatively high
g value will tend to be more similar to each other than words
constructed by sampling from a geometric distribution defined by
a relatively low g value. As we will see below, this property is used
to account for the mirror-patterned WFE: It is assumed that HF
words share more common features than LF words, which is
implemented in the Shiffrin and Steyvers (1997) model, by assum-
ing that gHF � gLF, and hence the lexical/semantic images of
different HF words are more similar than those of different LF
words (on average).

When a word is studied, an episodic image (or trace) of the
event is stored in memory, and different study events are stored in
different images. Each episodic image is a vector of features, and
hence the episodic representation of an n-item study list consists of
n vectors.

When a word is studied, its lexical/semantic image is retrieved
from memory. The episodic encoding of a word is a relatively
incomplete and inaccurate copy of the word’s lexical/semantic
image (as well as context). Thus, some of the item features in a
word’s lexical/semantic image are stored in the episodic image of
the study event: After t time units of study, the probability that a
lexical/semantic feature will be stored in an episodic image is 1 �
(1 � u*)t, otherwise 0 is stored (u* is the probability of storing a
feature in a unit of time). Features are correctly encoded with
probability c. When incorrectly encoded, features are drawn ran-
domly according to Equation 1 and stored.
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At test, the lexical/semantic vector of w item features corre-
sponding to the test item serves as a retrieval cue. We assume that
the cue is a perfect copy of the lexical/semantic representation of
the test item (although this need not necessarily be the case,
Shiffrin & Steyvers, 1997).2 Memory is probed by comparing (or
matching) the retrieval cue in parallel against the n images (Ij) in
memory, and the match consists of noting which features of Ij

match the corresponding features of the cue. Next, a likelihood
ratio, �j, is computed for each Ij:

� j � �1 � c�njq �
i�1

� �c � �1 � c� g�1 � g�i�1

g�1 � g�i�1 � nijm

, (2)

where g is the long-run environmental base rate for the occurrence
of features, �j is the activation of Ij in response-probing memory
with the retrieval cue, and �j is positively related to the number of
matching features and the diagnosticity of their values. That is,
matching rare features (i.e., relatively high integer values) contrib-
utes more activation than matching common features (i.e., rela-
tively low integer values) because rare features are less likely to
match by chance, according to the Bayesian calculation (Equation
2). As we previously noted, LF words tend to consist of more
unusual features than HF words in REM. Thus, LF features are
said to provide relatively diagnostic information about whether an
image in memory corresponds to the retrieval cue, and LF retrieval

cues tend to produce higher �js than HF retrieval cues when a cue
and an image correspond to the same word.

The recognition decision is based on the odds, �, the probability
that the test item is old divided by the probability that the test item
is new (Shiffrin & Steyvers, 1997):

� �
1

n �
j�1

n

�j �
1

n � �
j�1

k

�jLF � �
j�k	1

n

�jHF� , (3)

where n is the number of items studied, k is the number of LF
words studied, n � k is the number of HF words studied, and �jHF

and �jLF are the activations associated jth HF and LF images,
respectively.3 For REM, we assume 2AFC recognition is per-
formed by separately computing the odds for both test items, and
the item producing the greatest odds is chosen (Equation 3).

We now have all the information necessary to understand why
REM predicts a mirror-patterned WFE: LF words consist of more
uncommon features than HF words (i.e., gHF � gLF). Therefore, a
much greater �j is usually produced when an LF retrieval cue is
matched against a similar trace in memory—like the one that was
stored if the test word was actually studied—than when an HF
retrieval cue is used to probe memory. This produces the advan-
tage for LF-old words in standard-comparison test trials (R1) and
in old-item null-comparison test trials (R2).

For choices involving a new item, the mirror-patterned WFE is
predicted because the common features that make up HF retrieval
cues tend to match the images of other words better than the
uncommon features that make up LF retrieval cues. The additional
spurious matches for HF foils produce greater �js, which are
summed to produce the odds. It is easy to see from Equation 3 that
HF foils tend to be called “old” more often because the average
nontarget �j is greater for HF words than for LF words. This
produces the advantage for LF-new words in standard-comparison
test trials (R1) and in the new-item null-comparison test trials (R2).

The Effect of List Composition on 2AFC
Recognition in REM

The question we ask is what effect does a change in the pro-
portion of HF words studied have on recognition? The left panels
of Figure 2 show that REM (Shiffrin & Steyvers, 1997) predicts a
list-composition effect: The probability of choosing HF words,
especially foils, is predicted to increase as the percentage of HF
words studied increases. That is, P(HF-new, LF-new) and P(HF-
old, LF-new) increase and P(LF-old, HF-new) and P(HF-old,
HF-new) decrease as the proportion of HF words studied increases.

The same mechanism that produces the list-composition effect
produces the LF advantage for foils: access to memory is global
(Equation 3; for a review of global matching models, see Clark &
Gronlund, 1996), and HF and LF words are represented by features

2 Shiffrin and Steyvers (1997) discuss the necessity for context to be
stored and used in the retrieval cue at test. In our modeling, however, these
assumptions were not necessary because we assumed no extralist images
were stored for the sake of simplicity.

3 Technically, this is incorrect; n refers to the number of items in a set
activated above a threshold by a context cue. In this model, we assume all,
and only, list images are in the activated set.

Figure 1. Probability of sampling feature j for geometric distributions
defined by different base-rate parameter values (g). gHF and gLF refer to the
values of the base-rate parameter for high-frequency and low-frequency
words, respectively. When sampled from a geometric distribution defined
by a relatively high g value, the features that represent a word will tend to
be integers with relatively small values and with relatively little variability.
Conversely, when g is relatively low, the features that represent a word are
more varied and have a greater mean value. On the assumption that gHF �
gLF, HF words are more similar to each other than LF words. It is this
assumption that underlies the retrieving effectively from memory theory
account of the word-frequency effect for recognition memory.
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drawn from different geometric distributions (Equation 1). HF
members of the global set of nontarget images produce relatively
high activations (Equation 2) in response to HF retrieval cues
because different HF words tend to share features. It is easy to see
from Equation 3 that adding more HF images to memory will tend
to increase the odds for HF words. Therefore, the means of the HF
old- and new-item odds distributions are positively related to the
percentage of HF items studied (Shiffrin & Steyvers, 1997), which
means that the familiarity of HF words increases relative to the
familiarity of LF words as the number of HF images in the global
set increases. The top-left panel of Figure 2 also shows that
increasing the proportion of HF words studied is expected to have
relatively little effect on the familiarity of LF words—that is,

P(LF-old, LF-new). This is simply because LF words tend to
consist of relatively uncommon features, and therefore produce
relatively few spurious matches regardless of the list composition.

The ALT Account of the WFE

According to the ALT (Glanzer & Adams, 1990; Glanzer et al.,
1993), a trace is a set of features, some features are “marked” when
a word is studied, and marking is positively related to the amount
of attention an item attracts at study. ALT predicts a WFE because
LF words are assumed to attract more attention than HF words, and
because LF targets are expected to have more marked features than
HF targets.

Figure 2. Retrieving effectively from memory (REM) and attention/likelihood theory (ALT) predictions for
two-alternative forced-choice (2AFC) recognition as a function of list composition. Monte Carlo simulations
were used to generate REM predictions (Shiffrin & Steyvers, 1997). For each simulation, 1,000 simulated
subjects were run with the following parameter values: w � 20, gHF � .45, gLF � .325, g � .4, t � 10, c � .7,
u* � .04. For 2AFC recognition, six different types of pairs were tested (LF-old/LF-new, LF-old/HF-new,
HF-old/LF-new, HF-old/HF-new, HF-new/LF-new, and LF-old/HF-old). The item from each pair that elicited
the greatest odds was chosen to be the recognized item. The ALT predictions are computed from p(new) � .10,
N � 1,000, n(LF) � 60, n(HF) � 40, p(LF, old) � .154, p(HF, old) � .136, p25(.,old) � .1495, and p75(.,old) �
.1405. The results of many simulations using other sensible parameter values were very similar to those
presented here for both models. P(x, y) � mean probability of choosing x over y; LF � low frequency; HF �
high frequency.
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Specifically, memory representations in ALT consist of N fea-
tures. A proportion of the features in each trace, p(new), are
already marked prior to study. That is, p(new) indexes the amount
of “noise” in a trace. When studied, a subset, n(i), of a word’s
features are randomly sampled from its memory trace, where i
indexes experimental conditions (e.g., HF vs. LF), and they are
marked if they were not already. The proportion of features sam-
pled is �(i) � n(i)/N, and therefore the proportion of marked
features after an item has been studied is:

p�i, old� � p�new� � ��i� � 
1 � p�new��, (4)

where �(i) reflects the amount of attention devoted to studying a
word. Hence, from Equation 4 it is easy to see that the proportion
of marked features after study is positively related to �(i).

At test, n(i) features are randomly sampled from the test item’s
trace, and x of the features are found to be marked. The recognition
decision is based on the log-likelihood ratio associated with the
number of marked features sampled for items of type i (LF vs. HF)
and type j (old vs. new):

ln L�x�i, j� � n�i� � ln�q�i, old�

q�new� � � x � ln�p�i, old� q�new�

p�new� q�i, old�� ,

(5)

where q(i, j) � 1 � p(i, j). The lnL(x)s are distributed according to
the binomial distribution described by n(i) and p(i, j):

p�x�i, j� � �n�i�

x 	 � p�i, j�x � q�i, j�n�i��x, (6)

p(x | i, j) should not be confused with P(x, y) used in R1–R3. p(x
| i, j) is the probability of randomly sampling x-marked features
from a memory trace given the test item is i (e.g., HF vs. LF) and
j(old vs. new). P(x, y), however, is the probability of choosing item
x over item y in a 2AFC recognition task.

In ALT for 2AFC recognition, a random sample of n(i) features
is taken from the test item’s trace (x will be marked), the log
likelihoods are computed using Equation 5, and the item with the
greater log likelihood is chosen. ALT predictions for the different
P(x, y)s can be computed using Equation 6.

A fundamental property of ALT is that changes in n(i), p(i, old),
and p(new) produce opposite changes in the tendencies to call
targets and foils “old.” Hilford, Glanzer, and Kim (1997) state:
“Any manipulation that affects the recognition of old items will
also affect the recognition of new items” (p. 593). That is, any
manipulation that increases the tendency to call a class of targets
“old” decreases the tendency to call foils from that class “old.”
This property of ALT is sometimes called concentering because it
reflects a convergence on the decision axis of the means of
underlying old and new lnL(x) distributions.

In ALT, differences in the amount of attentional resources given
to studying different classes of stimuli account for mirror effects in
general and the WFE specifically: ALT assumes that LF words
attract more attention than HF words. According to the concenter-
ing principle, the distributions of the classes of stimuli that attract
relatively high amounts of attention are more spread out on the
decision axis—and therefore overlap less—relative to those of

classes of stimuli that attract less attention (e.g., see Figure 3).
Thus, the LF distributions overlap less than the HF distributions,
and LF words are therefore better recognized than HF words.

At test, the proportion of marked features that are sampled is
greater, on average, for LF targets than for HF targets because
more features are sampled for LF words and because LF words
have more marked features (on average). Therefore, the mean of
the LF target distribution is greater than the mean of the HF target
distribution (R3). This produces the advantage for LF words on
standard comparisons (R1) and on null-comparison test trials in-
volving old words (R2).

For choices involving a new item, the mirror-patterned WFE is
predicted because LF words are expected to have a greater number
of marked features if they were studied than HF words. It should
be noted that the same proportion of marked features are contained
in the traces of LF and HF foils—p(new). Therefore, the mean of
the HF foil distribution is greater than the mean of the LF foil
distribution over the same range of possible lnL(x) values (R3),
only because of the system’s expectation that more marked fea-
tures will be sampled from LF traces. Thus, more marked features
need to be sampled from LF foil traces than HF foil traces to
generate an “old” response. This produces the advantage for LF
foils in standard-comparison test trials (R1) and in the new-item
null-comparison test trials (R2).

The Effect of List Composition on 2AFC
Recognition in ALT

The most basic version of ALT predicts no list-composition
effect because only information about the test item enters into the
computation of likelihood ratios (Equation 5). That is, ALT is a
local-access theory because it assumes that only the contents of
single trace contributes to the recognition decision. Alternatively,
Glanzer et al. (1993) suggested that the average expectation of the
number of marked features, p(.,old), may be used to compute the
likelihood ratios for all items. On this assumption, access to
memory is still locally accessed, but metalevel inferences based on
the compositions of the study lists are also used in likelihood
computations. If so, p(.,old) will vary with list composition. How-
ever, the right-hand panels of Figure 2 show that ALT predicts that
changes in p(.,old) have no effect on 2AFC recognition.

Glanzer et al. (1993) explained the predicted null effect of list
composition this way: “The reason for the stability in the predicted
data values, despite changes in the log likelihood means, is that
changes in means are accompanied by changes in variance” (p.
564). To see why, consider that in ALT, recognition performance
is a positive function of the difference between the means of two
lnL(x) distributions, one corresponding to each word in a 2AFC
recognition task. Figure 3 shows the lnL(x) distributions corre-
sponding to a WFE for two levels of list composition (25% and
75% HF). These distributions were derived on the assumption that
the average p(i, old) was used to compute the likelihood ratios for
all types of items. Thus, for p(new) � .10, N � 1,000, n(LF) � 60,
and n(HF) � 40, Equation 4 produces p(LF, old) � .154 and p(HF,
old) � .136. If p(.,old) is the average p(i, old), then p25(.,old) �
.1495 and p75(.,old) � .1405 . p25(.,old) � p75(.,old) because the
system expects more HF words on the 75% list than on the 25%
list.

620 MALMBERG AND MURNANE



Figure 3 shows that as the memory system expects more HF
words—that is, p(.,old) decreases—the distance from 0 of all the
distributions decreases: The means of the target distributions be-
come less positive, and the means of the foil distributions become
less negative. Thus, the differences between the two old-item and
the two new-item distributions decrease. The change in p(.,old),
however, does not affect recognition performance because perfor-
mance is also a negative function of the variance of the two lnL(x)
density distributions. That is, two highly variable distributions
overlap to a greater extent than two distributions that are less
variable. Figure 3 shows that in ALT, a decrease in p(.,old)
decreases the variance of all the distributions, and therefore its
effects on the means and the variances trade off.

The mean and variance of the lnL(x) density distributions are
given by the following equations, respectively:

E lnL�x�i, j� � n�i� p�i, j� ln�p�i, old�

p�new� �
� n�i� q�i, j� ln�q�i, old�

q�new� � and (7)

Var lnL�x�i, j� � n�i� p�i, j� q�i, j�� ln�p�i, old� q�new�

p�new� q�i, old���
2

.

(8)

Equation 8 shows that a decrease in the p(.,old) results in a
decrease in the variance of all the distributions simply because the
same p(.,old) is used to compute the variance of all of them, and
as p(.,old) decreases so does

Figure 3. Attention/likelihood theory performance for two-alternative forced-choice recognition. LF � low
frequency; HF � high frequency.
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� ln� p�i, old�q�new�

p�new�q�i, old���
2

. (9)

The effect of

p�i, old�

p�new�

in Equation 7 is to position the means of the distributions on the
decision scale relative to 0. Thus, decreasing

p�i, old�

p�new�
(10)

decreases the distances of means of all the underlying lnL(x)
distributions from 0, converging them on the decision scale. Fig-
ure 3 shows that the ordering of the means remains unchanged
with changes in p(.,old). The order of the means is preserved
because

p�i, old�

p�new�

are the same for both HF and LF words. That is, the effect of
increasing p(.,old) in Equation 5 is to map values of x for LF and
HF words onto a single different lnL(x) scale, which preserves the
order of the lnL(x)s (a proof is offered in the Appendix). In
combination, the convergence of the means and the decrease in the
variances of the lnL(x) distributions trade off, and 2AFC recogni-
tion performance is not predicted to vary as a function of list
composition.

Experiment 1: Forced-Choice Recognition

In the prior section, we showed that ALT and REM 2AFC
models make different predictions concerning the effect on the
WFE of studying different proportions of HF and LF words. ALT
predicts no effect, and REM predicts that the probability of choos-
ing HF words will increase as the proportion of HF words studied
increases. In this experiment, we directly test these predictions by
having subjects study lists that consist of either 25% HF words and
75% LF words or 75% HF words and 25% LF words.

Method

Subjects. Forty-eight students at the University of Maryland partici-
pated in the experiment in exchange for course credit.

Design and materials. Word frequency (HF vs. LF) and list composi-
tion (25% vs. 75% HF words) were manipulated within subjects. The
dependent measures were the percent correct for the standard comparisons
and the probabilities of selecting the HF foil and the LF target for the new-
and old-item null comparisons, respectively. Twenty-four subjects were
randomly assigned to each list-order condition.

LF versus HF was operationally defined as words appearing between 1
and 10 times versus greater than 50 times per million (Kučera & Francis,
1983). Word length and concreteness are sometimes controlled when word
frequency is manipulated. However, this control is not crucial, as the WFE
is not qualitatively affected by the implementation of these controls (Hintz-
man et al., 1994; Schulman, 1967).

Two 96-item study lists were randomly constructed for each subject.
Each word on the study list was presented in the center of a computer
monitor for 2 s of study followed by a 150-ms interstimulus interval. The
study list was followed by a 30-s math task and 96 2AFC test trials ordered

randomly. Fifty-six LF-old/LF-new and 56 HF-old/HF-new pairs were
tested for the 25% and the 75% lists, respectively, and 8 pairs for each of
the remaining five choices were tested. List order was counterbalanced.

Procedure. On each 2AFC trial, subjects were shown two words, one
above the other on a computer screen. The old item appeared above the
new item on half of the standard test trials, and the order was determined
randomly for the null comparisons. The 1 and 2 keys were used to indicate
that the top and bottom words were studied, respectively.

Results

An alpha level of .05 is the standard of significance; t tests are
two-tailed. List order did not significantly affect any choice and
did not interact with comparison type. Therefore, the data were
collapsed across list order for the remaining analyses. Figure 4
plots P(x, y), the probability of choosing item x over item y. The
left panel of Figure 4 plots P(x, y) for those choices involving an
LF foil, and the right panel plots P(x, y) for the remaining choices.
Comparing across panels, P(LF-old, LF-new) was greater than
P(LF-old item, HF-new), t(47) � 2.23, SEM � .02. P(HF-old,
LF-new) was greater than P(HF-old item, HF-new), t(47) � 5.29,
SEM � .02. The old and new null comparisons were significantly
greater than .50, t(47) � 7.86 and t(47) � 13.03, respectively.

List composition. The left panel of Figure 4 shows that the
probability of choosing an LF foil decreased significantly as the
proportion of HF words studied increased, F(1, 47) � 4.66,
MSE � 0.01. The probability of choosing an LF-new word de-
creased as the percentage of HF words studied increased for the
HF-old/LF-new choice, F(1, 47) � 5.37, MSE � 0.10, and the
HF-new/LF-new choice, F(1, 47) � 20.38, MSE � 0.51. The right
panel of Figure 4 shows that list composition did not significantly
affect any of the other choices subjects made.

Discussion

Overall, LF foils were rejected more often when the study list
consisted of mostly HF words. ALT and REM do not predict this
result. For REM, differences between its predictions and our
findings are observed by comparing the left panels of Figure 2 with
Figure 4. Figure 4 shows that P(HF-new, LF-new), P(HF-old,
LF-new), and P(LF-old, LF-new) increase as the percentage of HF
words studied increases, but the left panels of Figure 1 show that
REM predicts that P(HF-new, LF-new) and P(HF-old, LF-new)
should increase, and P(HF-old, HF-new), P(LF-old, HF-new), and
P(LF-old, HF-old) should decrease. The increase in P(HF-new,
LF-new) was both predicted by REM and observed. Theoretically,
this could mean one of two things: either HF foils increased in
familiarity or LF foils decreased in familiarity as the percentage of
HF words studied increased. However, if HF foils became more
familiar—as REM predicts—then P(HF-old, HF-new) and P(LF-
old, HF-new) should decrease, but neither were significantly af-
fected by list composition. Thus, REM predicted an increase in the
probability of choosing HF words, but we observed a decrease in
the probability of choosing LF foils.

The finding that P(HF-old, LF-new) and P(LF-old, LF-new)
increased along with P(HF-new, LF-new) is consistent with the
proposition that LF foils became less familiar relative to HF
targets, LF targets, and HF foils as the percentage of HF words
studied increased. This proposition is, however, inconsistent with
the assumptions made by ALT. ALT simply predicts no list-
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composition effect, and one was observed (see Figures 2 and 3). Of
importance, the nature of the list-composition effect is also trou-
bling for ALT: Not only does ALT not predict a list-composition
effect, but if it did, it would be demonstrated by a change in all P(x,
y)s involving LF items according to the concentering principle.
However, only the P(x, y)s involving LF foils were affected by list
composition, and this violates the concentering principle.

Experiments 2A and 2B

Neither ALT nor REM fared well in predicting the results of
Experiment 1. The results from Experiment 1, which used a 2AFC
procedure, provide evidence within the framework of the signal
detection theory that LF words are better recognized as the pro-
portion of HF words studied increases because LF foils become
relatively less familiar. The goal of Experiment 2 is to generalize
the list-composition findings from 2AFC recognition to yes–no
and ratings tasks in Experiments 2A and 2B, respectively. The
yes–no task requires the subject to respond positively to studied
items, and the ratings task requires the subject to assess their
confidence that an item was studied. The following ordering is a
mirror-patterned WFE for yes–no—P(old)—recognition and mean
ratings: LF-new � HF-new � HF-old � LF-old (cf. R3). Both
ALT and REM predict the yes–no and ratings WFEs, but they
make different predictions concerning the effect of list
composition.

In REM, comparing the odds (Equation 3) associated with a test
item with a criterion performs yes–no recognition: If the odds
exceed the criterion, then an “old” response is made. REM predicts
an LF hit-rate (HR) advantage because it assumes that LF words
consist of more uncommon features than HF words (i.e., gHF �
gLF), and matching uncommon features contributes more to �j than
matching common features (Equation 2). The false-alarm rate
(FAR) effect is predicted because the common features that make

up HF retrieval cues tend to match the images of other words better
than the uncommon features that make up LF retrieval cues. The
additional spurious matches produce the LF FAR advantage (as
explained above) and also produce a list-composition effect on the
means of the HF odds distributions, which are predicted to increase
with increases in the percentage of HF words studied.

For yes–no recognition, the issue of a possible shift in the
criterion for responding “old” needs to be addressed. A criterion
shift between list-composition conditions could produce a list-
composition effect for yes–no recognition independently of one
that may be caused by a change in sensitivity, especially if differ-
ences in the list structures are detected (e.g., Higham, Brooks, &
Lee, 1997). Because neither ALT nor REM make predictions
about the location of the criterion in such situations, we consider
three possible outcomes for the present experiments: As the per-
centage of HF words studied increases, the criterion is not affected
by list composition, the criterion becomes stricter, and the criterion
becomes less strict.

The left panels of Figure 5 show the REM predictions for
yes–no recognition when different criterion shifts are assumed.
The middle-left panel of Figure 5 assumes no criterion shift as a
function of list composition. Under this condition, REM predicts
that the HF HR and FAR will increase as the percentage of HF
words studied increases. The top-left panel of Figure 5 assumes a
less strict criterion in the 75% condition: REM predicts that the HR
and FAR for both HF and LF words will increase as percentage of
HF words studied increases. The bottom-left panel assumes a
stricter criterion in the 75% condition: REM predicts that the HR
and FAR for LF words will decrease as percentage of HF words
studied increases. The exact predictions for HF words, however,
depend on the magnitude of the shift. The bottom-left panel of
Figure 4 shows the predicted pattern of HRs and FARs if the
increase in the criterion exactly offsets the increase in the famil-

Figure 4. Two-alternative forced-choice performance as a function of pair type and list composition. Error bars
indicate standard errors. Prob. � probability; LF � low frequency; HF � high frequency.
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Figure 5. Retrieving effectively from memory (REM) theory and attention/likelihood theory (ALT) predictions
for yes–no recognition as a function of list composition. The same parameters were used for the ALT and REM
yes–no models as were used in Figure 1 for the two-alternative forced-choice recognition task. For REM, the
criteria used were 1.0 in each of the 25% conditions and 0.8, 1.0, and 1.2 in the 75% conditions, assuming a
decrease, no change, and an increase in the criterion, respectively. For ALT, the criteria used were 0.0 in each
of the 25% conditions and �.33, 0.0, and .33 in the 75% conditions, assuming a decrease, no change, and an
increase in the criterion, respectively. LF � low frequency; HR � hit rate; HF � high frequency; FAR �
false-alarm rate.
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iarity of HF words. In this case, REM predicts no effect of list
composition for HF words. A smaller increase, however, would
result in a small increase in HF HRs and FARs, and a larger
increase would result in a small decrease in HF HRs and FARs.

In ALT, yes–no recognition involves comparing the lnL(x)
associated with a test item to a criterion. If the lnL(x) is greater
than the criterion, then the word is called “old.” ALT predicts an
LF HR advantage because lnL(x) tends to be greater for LF targets
than for HF targets because n(i) is greater for LF targets. The LF
FAR advantage is predicted because LF items are expected to have
more marked features if they were studied (as previously
explained).

ALT once again predicts no list-composition effect based on the
counteracting changes in the means and variances of the log-
likelihood distributions produced by changes in p(.,old). On this
matter, Glanzer et al. (1993) wrote: “The differences, however,
have no effect on the hits and false alarms” (p. 564). Thus, any
list-composition effect must be a criterion shift according to ALT.
The right panels of Figure 5 show ALT’s yes–no recognition
performance when different criterion shifts are assumed. The mid-
dle panel assumes no criterion shift as a function of list composi-
tion: ALT predicts no list-composition effect. The right panel
assumes a less strict criterion in the 75% condition: ALT predicts
an increase in HRs and FARs for both HF and LF words. The
bottom panel assumes a stricter criterion in the 75% condition:
ALT predicts a decrease in HRs and FARs for both HF and LF
words.

There are two reasons why a simple yes–no recognition task is
used in Experiment 2A and a rating task in Experiment 2B.
Empirically, the sensitivity and bias can be measured using the
ratings data from each subject in Experiment 2B to construct a
receiver operating characteristic (ROC) in z-transformed space,
and its slope can be used to calculate a measure of sensitivity and
the criterion location. These measures will be helpful when inter-
preting the pattern of HRs and FARs that we observe, and taking
into account the slopes of the z-ROCs is important because they
have been shown to be different for HF and LF words (Glanzer et
al., 1993). The second reason for using both a yes–no and a ratings
task is because ratings do not always correspond directly to the
yes–no decision (e.g., Van Zandt, 2000). By using both proce-

dures, the generality of the list-composition effect can be deter-
mined better.

Method

Subjects. One hundred forty-five students enrolled in introductory
psychology courses at the University of Maryland participated in exchange
for course credit. Eighty subjects performed the yes–no task, and 65
subjects performed the ratings task. For the yes–no task, 40 subjects were
randomly assigned to either the 25% or the 75% condition. For the ratings
task, 32 and 33 subjects were randomly assigned to the 25% and 75%
list-composition conditions, respectively.

Design and materials. The basic design and materials used in Exper-
iment 1 were used here with the following exceptions. List composition
(25% vs. 75% HF words) was manipulated between subjects: For each
subject, a 100-item study list and a 200-item test list were constructed. The
study list was formed by randomly selecting n � 25 or n � 75 HF words
and 100 � n LF words. The test list consisted of the studied items and the
same number of HF and LF foils. For each yes–no test trial, a word was
presented on the computer screen, and subjects were instructed to answer
“yes” if it was a studied word or “no” using the d and k keys, respectively.
For each ratings trial, keys 1, 2, and 3 indicated that an item was not studied
(1 � low confidence, 2 � moderate confidence, and 3 � high confidence),
and keys 7, 8, and 9 indicated that an item was studied (7 � low
confidence, 8 � moderate confidence, and 9 � high confidence).

Results

Word frequency. The mean HRs and FARs for Experiment 2A
are presented in the left panel of Figure 6. HRs are greater for LF
words than for HF words, F(1, 78) � 45.24, MSE � 0.34, and the
FARs are less for LF words than for HF words, F(1, 78) � 136.72,
MSE � 1.07. The confidence ratings from Experiment 2B were
converted to HRs and FARs by collapsing over the “old” ratings.
The middle panel of Figure 6 shows that HRs are greater for LF
words than for HF words, F(1, 63) � 15.90, MSE � 0.15, and
FARs are less for LF words than for HF words, F(1, 63) � 100.80,
MSE � 0.97.

List composition. The left panel of Figure 6 shows that in
Experiment 2A the FARs for the LF words decreased significantly
as the proportion of HF words studied increased, F(1, 78) � 4.48,
MSE � 0.036. The interaction of list composition and word

Figure 6. Yes–no and ratings performance as a function of pair type and list composition. Error bars indicate
standard errors. LF � low frequency; HF � high frequency.
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frequency was significant for FARs, F(1, 78) � 8.29, MSE � 0.06,
but not for HRs, F(1, 78) � 1.19. List composition did not
significantly affect HRs (F � 1) or FARs, F(1, 78) � 1.00.

A similar pattern of data was observed in Experiment 2B. The
middle panel of Figure 6 shows that the LF FAR decreased as the
proportion of HF words studied increased, F(1, 63) � 9.47,
MSE � 0.14. The HF FAR (F � 1) was not significantly affected
by list composition. The interaction of list composition and word
frequency was significant for FARs, F(1, 63) � 10.76,
MSE � 0.10, but not for HRs (F � 1). List composition did not
significantly affect the HRs (F � 1) or FARs, F(1, 63) � 1.96.

The average ratings, shown in the right panel of Figure 6 (1
and 6 are the lowest and highest levels of confidence), are consis-
tent with the HRs and FARs. As the proportion of HF words
studied increased, the ratings for LF foils decreased significantly,
F(1, 63) � 5.48, MSE � 2.07. List composition did not signifi-
cantly affect the ratings for targets or HF foils (all Fs � 2.75).
Ratings were greater for LF than for HF targets, F(1, 63) � 45.08,
MSE � 6.15, and smaller for LF than for HF foils, F(1,
63) � 36.29, MSE � 5.32.

The ratings were used to compute individual-subject ratings
z-ROCs, and their slopes, m, were used to estimate the criterion
location, C � [�1/(m 	 1)][z(HR) 	 z(FAR)], where C estimates
the location the criterion relative to the mean of a foil distribution
(MacMillan & Creelman, 1991). C for LF words was greater in the
75% than in the 25% list-composition condition, t(63) � 2.53, p �

.015, but list composition did not affect C for HF words ( p �

.995). Thus, the yes–no criterion was positively related to the
proportion of HF words studied relative to the LF-new distribution.

The slopes of z-ROCs were used to compute a measure of
sensitivity for each subject, da (MacMillan & Creelman, 1991).
The mean da for HF words was .94 and .92, and the mean da for
LF words was 1.69 and 2.30 for the 25% and 75% conditions,
respectively (SEMs � between .10 and .22 inclusive). The inter-
action between list composition and word frequency was signifi-
cant, F(1, 63) � 8.92, MSE � 2.85, p � .005. Recognition of HF
words was not affected by list composition, t(63) � 0.11, but LF
words were better recognized as the proportion of HF words
studied increased, t(63) � 2.17.

Discussion

Recognition of LF words but not HF words was affected by the
composition of the study list. The FAR decreased and da increased
for LF words as the proportion of HF words studied increased.
This outcome is consistent with the findings from Experiment 1,
which indicated that LF foils become relatively less familiar as the
proportion of HF words studied increases. In addition, subjects
adopted a stricter criterion for the 75% versus the 25% list com-
position. The bottom panels of Figure 5 show the ALT and REM
predictions for yes–no recognition when the criterion increases:
ALT predicts a decrease in both the HF and LF HRs and FARs,
and REM predicts a decrease in the LF HR and the LF FAR. The
observed effect was on the LF FAR only. Thus, ALT fails to
qualitatively predict three out of the four observed trends in HRs
and FARs, and REM fails to predict one out of four.

General Discussion

Our main finding is that LF words are better recognized as the
proportion of HF words studied increases. We also found that the
criterion location for yes–no recognition is a positive function of
the percentage of HF words studied. In combination, these two
findings more strongly constrain models designed to account for
WFE. The goal for this section is to describe some of the impli-
cations of our findings for ALT and REM.

Our findings are problematic for both the ALT and REM models
of the WFE. To predict our findings, a model needs to predict that
the difference between the mean of the LF-new distribution and
the means of the LF-old and both HF distributions increase as the
number of HF words studied increases. Is either the ALT or REM
theoretical framework amenable to solving this problem? We can
think of a number of plausible assumptions that might produce this
effect in REM, and here we describe one explicitly, as we mo-
mentarily defer our analysis of ALT. We will not consider here
every possible REM model. Rather, the goal of this modeling
exercise is to determine only if it is possible for the REM theory
to predict our major finding: LF words are better recognized as the
percentage of HF words studied increases. For the modified REM
model, the representational and global-matching schemes of REM
described in prior sections (and in Shiffrin & Steyvers, 1997) are
assumed. With these assumptions, the modified REM model pre-
dicts a WFE (Shiffrin & Steyvers, 1997).

One way in REM to predict that the difference between the LF
odds distributions increases as the number of HF words studied
increases is to assume that LF words are encoded better when they
are studied on lists dominated by HF words, perhaps because their
unusual features stand out more or are more salient when presented
in the context of HF words. Consider that the c parameter in REM
is the probability of correctly storing a feature, and words are
encoded well when c is relatively high. If c increases for LF words
as the proportion of HF words studied increases, then LF images
will tend to be stored better when lists are dominated by HF words.
In this model, the �js for LF targets increase (on average) because
c increases for LF words, and this produces the required increase
in performance for LF words as the proportion of HF words
studied increases. The model also predicts that the odds for HF
words are positively related to the proportion of HF words studied
(see The Effect of List Composition on 2AFC Recognition in REM
section; also see Shiffrin & Steyvers, 1997). Thus, the mean of the
LF-old distribution and the means of the HF distributions increase
relative to LF new-item distribution, and this pattern of movement
is what is required to predict a decrease in the probability of
choosing LF foils for 2AFC recognition.

If the criterion location varies, then the effects of list composi-
tion on the means of the distributions may be offset by some
stricter criteria. Such a shift will decrease the FAR for LF words
(see the bottom panels of Figure 5). Our findings indicate that the
criterion location used in yes–no recognition is positively related
to proportion HF words studied. Thus, REM should be able to
predict the yes–no data, and to the extent that the difference
between the ratings and the yes–no task is the number of criteria
used to make decisions, list composition will similarly affect
performance of both tasks.

The recognition task varied between subjects, and the different
groups performed at different overall levels of performance.
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Therefore, we chose the yes–no data from Experiment 2B (rather
than Experiment 2A) to predict because the overall level of per-
formance was more similar to that for 2AFC recognition than if we
chose to fit the yes–no data from Experiment 1.4 Thus, no attempt
was made to find a “best fitting” set of parameters for any
model. Rather, we only wanted see whether the different mod-
els could qualitatively predict the major trends in the data from
both tasks. Therefore, for the ALT and the modified REM
model, we first found a set of parameters that provided a decent
prediction for 2AFC recognition, and then we used those pa-
rameters to generate predictions for yes–no recognition. We
also assumed, on the basis of our finding from Experiment 2B,
that the yes–no criterion was positively related to the percent-
age of HF words studied.

To generate some predictions from the modified REM model,
let cHF(i) and cLF(i) equal the probabilities of correctly encoding a
feature from an HF and an LF word, respectively, given a study list
consisting of i% HF words. Assume:

cLF(75) � cLF(25) 	 d and

cHF(75) � cHF(25),

where d � 0, cLF(25) � cHF(25), and the value of c used in
Equation 3 is the mean of cHF and cLF —that is, c(75) � (2 *
c[25]) 	 d)/2. Thus, d is the increase in the probability of correctly
encoding an LF feature as the percentage of HF words studied
increases. To generate a prediction for the REM model described

by Shiffrin and Steyvers (1997), we set d � 0. All the other
parameters were fixed to the parameters used to generate predic-
tions for the modified REM model. The ALT and REM parameter
values we used are listed in Table 1, and they correspond very
closely with those used by Shiffrin & Steyvers (1997) and by
Glanzer et al. (1993) to account for a variety of other findings
(listed in Figure 1).

Performance of the modified REM model, the Shiffrin and
Steyvers’ (1997) REM model, and ALT are shown in Figure 7
and listed in Table 1. We want to determine two things: Do
these models predict the 2AFC performance (top two rows of
Figure 7), and can the same memory system predict the yes–no
performance (bottom row of Figure 7)? A maximum-likelihood
analysis of these predictions indicates that all three models can
predict the data reasonably well—new REM: G2(9) � 0.193,
old REM: G2(10) � 0.236, ALT: G2(13) � 0.350, all ps � .95.

4 The inferences drawn from the analyses of yes–no data from Experi-
ments 2A and 2B are qualitatively similar. However, the decrease in the LF
FAR in Experiment 2A was smaller than in Experiment 2B, and HRs and
the HF FARs were slightly greater. The model predicts this if the criterion
shift in Experiment 2A was not as great as the criterion shift in Experiment
2B. We fit the data from Experiment 2A with the same parameters used to
fit the data from Experiment 2B, and a good qualitative fit was obtained,
but the quantitative fit was not so good because the subjects’ performance
was better in Experiment 2A. With slightly different parameters, however,
the model also does a good job for Experiment 2A.

Table 1
Data and Fits for Experiments 1 and 2B

Condition

Dataa
New REM

model
Old REM

model ALT

25% 75% 25% 75% 25% 75% 25% 75%

2AFC

P(LF-old, LF-new) .80 .82 .79 .83 .79 .79 .81 .81
P(HF-old, LF-new) .75 .81 .75 .82 .75 .81 .73 .73
P(HF-new, LF-new) .63 .78 .56 .68 .56 .67 .57 .57
P(HF-old, HF-new) .69 .70 .71 .71 .71 .71 .69 .69
P(LF-old, HF-new) .76 .79 .77 .76 .77 .72 .79 .79
P(LF-old, HF-old) .68 .65 .61 .62 .61 .55 .64 .64

Yes–no

LF HR .71 .71 .78 .78 .78 .72 .72 .65
HF HR .63 .65 .65 .65 .65 .64 .65 .47
HF FAR .36 .36 .32 .32 .32 .33 .37 .21
LF FAR .24 .15 .28 .19 .28 .19 .25 .14

G2 G2(9) � 0.193 G2(10) � 0.236 G2(13) � 0.340

Note. For each retrieving effectively from memory (REM) simulation, 500 simulated subjects were run with
the following parameter: w � 20, gHF � .46, gLF � .30, g � .41, t � 10, c � .7, u* � .025, criterion � .75,
and criterion shift � .15. d � .068 in the new REM model and d � 0 in the old REM model. The
attention/likelihood theory (ALT) predictions were derived from Equations 5 and 6 on the assumptions that
p(.,old) decreases as the percentage of HF words studied increases. Because ALT does not predict a list-
composition effect, we needed to choose either the 25% or 75% data to fit, and we chose to fit the data for the
25% condition. ALT’s predictions were derived from p(new) � .10, n(HF) � 40, n(LF) � 60, N � 1,000,
criterion � 0.0, and criterion shift � .33. 2AFC � two-alternative forced-choice; LF � low frequency; HF �
high frequency; HR � hit rate; FAR � false-alarm rate.
a The data in the top half of the table are from Experiment 1; the data in the bottom half of the table are from
Experiment 2B.
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This is not too surprising because each model was designed to
account for mirror effects in general and the WFE in particular,
and hence each model captures much of the data.

When more than one model provides decent quantitative pre-
dictions, how do we choose among them? There is no clear-cut

answer to that question (Shiffrin & Nobel, 1997). One factor that
should be considered when evaluating models is the number of
parameters each model needs to predict the data. Because the d
parameter was added to REM, the new REM model has additional
flexibility. ALT and the Shiffrin and Steyvers’ (1997) REM model

Figure 7. Performance of the revised retrieving effectively from memory (REM) model, REM (Shiffrin &
Steyvers, 1997), and attention/likelihood theory (ALT). Error bars indicate standard errors. The parameters for
these predictions are listed in Table 1. Prob. � probability; 2AFC � two-alternative forced-choice; LF � low
frequency; HF � high frequency.
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have fewer parameters and also provide decent quantitative
predictions.

It also seems prudent to take into account the qualitative pre-
dictions of each model: Figure 7 shows that the revised REM
model mimics the inverse relationship between the probability of
recognizing an LF foil and the proportion of HF words studied,
whereas the REM model described by Shiffrin and Steyvers (1997)
and ALT do not. ALT fails to predict the increases in P(LF-old,
LF-new), P(HF-old, LF-new), and P(HF-new, LF-new), as well as
the other smaller trends found in the middle-left panel of Figure 7.
Shiffrin and Steyvers’s REM model fails to predict the increase in
P(LF-old, LF-new), and it incorrectly predicts large decreases in
P(LF-old, HF-new) and P(LF-old, HF-old) because only HF words
vary in familiarity with changes in list composition.

The modified REM model does a better job of predicting our
major findings because LF words are better encoded on the 75%
list and because HF words become more familiar. Even with the
additional parameter, however, we found it difficult to find a set of
parameters that would generate predictions that exactly match the
data. One problem for the modified model is that it tends to
underpredict the magnitude of the mirror effect for the null-
comparison trials. Larger null-comparison effects are possible with
different parameters, but they trade off with performance on stan-
dard comparison trials. For example, a greater c value will increase
P(LF-old, HF-old), but it will also increase performance on the
standard comparisons. Another problem for the modified REM
model is that it has a difficult time predicting the minor trends in
the middle row of Figure 7. For example, the data show that
P(HF-old, HF-new) increases by 1%, P(LF-old, HF-new) increases
by 3%, and P(LF-old, HF-old) decreases by 3%, which suggests that
the increase in the mean of HF-old distribution is slightly greater than
the increase in the mean of the HF-new distribution. This trend for HF
words to be better recognized is relatively minor, however, and
slightly reverses for da in Experiment 2B.

The more flexible REM theory shows some signs of being able
to handle our main finding: LF words are better recognized as the
percentage of HF words studied increases. Can ALT predict the
data by adding the same assumption? If not, can ALT in its current
form predict the data at all? The answer is “no” to both questions.
To see why, consider that if we assume that �(LF) increases as the
proportion of HF words studied increases, then the ALT concen-
tering principle predicts that P(LF-old, LF-new), P(HF-old, LF-
new), P(LF-old, HF-new), and P(LF-old, HF-old) will increase,
and P(HF-new, LF-new) will decrease. However, Experiment 1
showed that only those 2AFCs involving an LF foil were affected
by list composition. Thus, even if ALT were to predict a list-
composition effect, it would be incorrect because our findings are
inconsistent with the concentering principle of ALT. This is not the
first time the concentering principle has been violated (e.g., Hirsh-
man & Arndt, 1997; Hoshino, 1991; Murnane, Phelps, & Malm-
berg, 1999, among others). Thus, evidence disconfirming ALT’s
simple theory of recognition continues to mount.5

Some Final Comments on the Models

In the prior section, we described a REM model that does a
better job than the REM model described by Shiffrin and Steyvers
(1997) in predicting our major finding: LF words are recognized
better as the percentage of HF words studied increase. However,

the modified REM model does not make perfect quantitative
predictions (in spite of having an additional parameter). There are,
however, other plausible assumptions that might produce similar
or better predictions in REM. For example, the number of attempts
at storing LF features may vary (t), the system might expect more
or fewer LF words at test by varying g in the activation function,
or the composition of the retrieval cues at test may be affected by
list composition. Fully exploring these models is beyond the scope
of this article. Therefore, it remains a somewhat open question as
to how problematic our findings are for the REM theory. For now
we conclude that the additional modeling options combined with
the performance of the modified REM model suggest that further
theoretical and empirical investigations of list composition and
WFEs within the REM framework are warranted.

Our findings pose a clear problem for the ALT theory. The
assumption that memory is locally accessed is the main problem
for ALT. Because access to memory is local, the composition of
the study list is irrelevant when computing the activation of any
one trace. In addition, metalevel rescaling of the decision axis
based on p(.,old) also does not produce a list-composition effect.

5 Another reason that we think that ALT cannot be modified slightly to
accommodate our findings is because if ALT can handle our list-
composition findings, then it cannot predict another critical list-
composition finding: the null list-strength effect. A positive list-strength
effect is observed when adding relatively well-encoded items to memory
interferes with the ability to remember relatively less well-encoded items.
For yes–no recognition memory, a null or “slightly negative” list strength
is observed (Murnane & Shiffrin, 1991; Ratcliff, Clark, & Shiffrin, 1990;
Shiffrin, Ratcliff, & Clark, 1990). It should be noted that the list-strength
effect is a null or slightly negative list-composition effect because a
list-strength manipulation is a list-composition manipulation. It should also
be noted that adding LF words to memory is for all intents and purposes
adding well-encoded items to memory within the ALT framework, and
therefore the correspondence between a list-strength manipulation and manip-
ulation of the percentage of HF words studied is a strong one for ALT.

Predicting both the WFE and the null list-strength effect has been a
critical benchmark for the evaluation of many (if not all) new theories of
recognition (e.g., Dennis & Humphreys, 2001; Estes, 1994; Glanzer et al,
1993; McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997). Indeed
predicting the null list-strength effect inspired many of them and was
deemed critical by Glanzer et al. (1993):

Attention/likelihood theory, as presented here, does not have a prob-
lem with the absence of list strength effects. It does not predict them.
To predict the presence of such effects would require an extension of
the theory. The one way that such effects could be produced without
extension of the theory would be if mixed lists produces a change in
d’ compared with pure lists . . . We have shown, however, that those
different kinds of estimates produce identical d’s. Because there is
nothing in the theory that predicts a list strength effect, the findings of
no list strength effect are not problematic for attention/likelihood theory
as they are for global theories of memory. (p. 565, italics added)

Thus, ALT and several more recent global theories of memory have been
shown to predict the null list-strength effect. The reasons why ALT
predicts null list-composition effects is because access to memory at test is
restricted to that of the test item, and because the use of metalevel
information concerning the composition of the study lists at test—that is,
p(.,old)—does not affect performance. Local access to memory allows
ALT to predict a null list-strength effect, but it also makes it very difficult
for ALT to accommodate our findings.
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We found that list composition does affect recognition memory and
that the patterns of data that we observe do not reflect a concentering
of the underlying distributions. This is a violation of a fundamental
property of the ALT activation function. Therefore, it appears that
ALT needs to be modified to account for the present findings.
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Appendix

To show that changes in p(.,old) have no effect on recognition in
attention/likelihood theory (ALT), one needs to show that for any value of
integer xi � 0, lnL(xA�i, j) � lnL(xB�i, j) for all p(.,old) where the class of
A stimuli is better recognized than B stimuli. That is, we need to show that
changes in p(.,old) do not affect the ordering of lnL(xA�i, j) and lnL(xB�i, j)
on the decision axis. One should consider that

lnL�x�i, j� � n�i� � ln�q�i, old�

q�new� � � x � ln�p�i, old� q�new�

p�new� q�i, old�� . (A1)

Next, it should be noted that

� q�i, old�

q�new� � and �p�i, old� q�new�

p�new� q�i, old��
are constant for any p(.,old) where p(new) is constant. Then let

� � � q�i, old�

q�new� � ,

and let

	 � � p�i, old� q�new�

p�new� q�i, old�� ,

and Equation A1 becomes

lnL�x�i, j� � n�i� � ln��� � x � ln�	�. (A2)

It is trivial to show that [n(A) � ln(�)] � [n(B) � ln(�)] for all � when
n(A) � n(B) and that 	 does not vary for Stimuli A and B. Thus, lnL(xA�i,
j) � lnL(xB�i, j) when n(A) � n(B), which is necessarily the case in ALT
(Glanzer et al., 1993). It is also straightforward to show using a similar
argument for Equation 6 that for all p(.,old) and for any value of integer xi

� 0 that p(xA�i, j) � p(xB�i, j). That is, a change in p(.,old) does not affect
the ordering of p(xA�i, j) and p(xB�i, j).
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