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Abstract When students encounter a set of concepts (or terms or principles) that are similar
in some way, they often confuse one with another. For instance, they might mistake one
word for another word with a similar spelling (e.g., allusion instead of illusion) or choose the
wrong strategy for a mathematics problem because it resembles a different kind of problem.
By one proposition explored in this review, these kinds of errors occur more frequently when
all exposures to one of the concepts are grouped together. For instance, in most middle
school science texts, the questions in each assignment are devoted to the same concept, and
this blocking of exposures ensures that students need not learn to distinguish between two
similar concepts. In an alternative approach described in this review, exposures to each
concept are interleaved with exposures to other concepts, so that a question on one concept
is followed by a question on a different concept. In a number of experiments that have
compared interleaving and blocking, interleaving produced better scores on final tests of
learning. The evidence is limited, though, and ecologically valid studies are needed. Still, a
prudent reading of the data suggests that at least a portion of the exposures should be
interleaved.
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In virtually any academic discipline, students encounter each important concept more than
once, and creators of textbooks and other kinds of learning materials must therefore decide,
incidentally or otherwise, how these exposures will be arranged. For example, a science
class assignment might focus on a single principle (e.g., photosynthesis) or cover multiple
principles. These kinds of scheduling decisions are often dismissed as inconsequential or
even dull, which might explain why this kind of intervention receives little or no attention in
textbooks and courses devoted to curriculum and instruction. Yet the timing of learning
exposures can dramatically affect learning outcomes. Many experiments have shown that
merely rearranging the order in which students encounter examples or questions, without

Educ Psychol Rev (2012) 24:355–367
DOI 10.1007/s10648-012-9201-3

D. Rohrer (*)
Psychology, University of South Florida, PCD 4118G, Tampa, FL 33620, USA
e-mail: drohrer@usf.edu



altering the number or nature of these exposures, can boost scores on final tests of learning.
This review examines one kind of scheduling intervention that appears to be especially
useful when students must learn to distinguish among similar concepts.

Discrimination Learning

When students must learn to distinguish among similar concepts, they often confuse one
with the other. For example, biology students are asked to distinguish among the genetic
processes of transcription, transduction, transformation, and translation—four terms with
similar spellings and meanings. Not surprisingly, a greater degree of similarity makes the
task more difficult (e.g., Skinner 1933). A failure to distinguish, or discriminate, between
two concepts (or terms or principles or stimuli) is called a discrimination error, and learning
to make these distinctions is discrimination learning.

The genetics example is obviously cherry picked, and that raises a question that underlies the
practical significance of this review: how often must students make difficult discriminations?
Indeed, most of the research on discrimination learning examines skills or concepts learned
outside the classroom. For instance, there are many studies of the subtle discriminations made
during speech comprehension (e.g., “pa” vs. “ba”) and face recognition, but children typically
master these skills before they begin school. In other studies of discrimination learning, subjects
learned skills needed only by experts, such as distinguishing among different species of birds.
This is not to say that discrimination expertise is necessarily impractical—indeed, medical
doctors must learn to distinguish among diseases with similar symptoms. Still, the majority of
discrimination learning studies employ tasks that few students encounter.

Yet subtle discriminations are required in several academic disciplines. In learning a
foreign language, for instance, students encounter pairs of words that are easily confused
with each other, as illustrated by Spanish word pairs like pero–perro, arrollo–arroyo, ciento–
siento, cerrar–serrar, cima–sima, and halla–haya. Vocabulary confusions also occur in a
student’s first language, and even English-fluent adults struggle with pairs like affect–effect,
allusion–illusion, ascent–assent, and appraise–apprise. Especially fiendish discriminations
appear in the sciences because groups of two or more terms often have similar spellings and
similar meanings, and examples include mitosis–meiosis, oviparous–ovoviviparous,
chromatid–chromatin, phagocytosis–pinocytosis, afferent–efferent, adhesion–cohesion,
solution–solute–solvent, ion–anion–cation, and glycerol–glycogen–glucagon.

Furthermore, discrimination learning plays a central role in the mastery of mathematics
and certain physical sciences. Proficiency in mathematics is measured solely by the ability to
solve problems, and this in turn demands that students learn to distinguish between super-
ficially similar kinds of problems requiring different strategies. For instance, because
students learn to multiply fractions (1/2×

1/3) by multiplying “tops and bottoms,” they
sometimes mistakenly add fractions (1/2+

1/3) by “adding tops and bottoms” (Siegler
2003). In other words, identifying an appropriate strategy for a problem requires students
to identify the category, or kind of problem, to which a novel problem belongs. This kind of
categorization is required in physics, too. For example, some incline motion problems are
solved with Newton’s second law, yet others require an understanding of the law of
conservation of energy. In fact, this specific example was used in a classic study reported
by Chi et al. (1981), in which experts, but not novices, categorized a physics problem on the
basis of its underlying principle (Newton’s second law or the law of conservation of energy)
rather than its superficial features (block sliding down an incline). These issues are revisited
in a later section devoted to mathematics learning.
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Interleaving

When students must learn similar concepts (or skills or terms or principles), the exposures to
these concepts are typically arranged in one of two ways. Most often, exposures to each
concept are grouped together. For instance, a physical science unit on gravity might include
three assignments: one with three questions on pendulums (a1a2a3), one with three questions
on free fall (b1b2b3), and one with three questions on incline motion (c1c2c3). This means
that the exposures are blocked by concept (a1a2a3b1b2b3c1c2c3). In an alternative approach
described in this review, exposures to concepts are interleaved (a1b1c1b2c2a2c3b3a3) so that a
question on one concept is followed by a question on a different concept. Readers who are
familiar with the intervention of spacing might wonder whether interleaving is another term
for spacing, but the two interventions are distinct, as detailed further below. Also, though
much of this review is devoted to comparisons of interleaving and blocking, students could
rely on a combination of the two strategies. For example, initial exposures to a concept could
be blocked, and subsequent exposures could appear within interleaved assignments. This
hybrid approach is considered later in this review.

The prototypical interleaving experiment is illustrated in Fig. 1a. Problems or questions
on each one of several concepts are interleaved or blocked during the learning phase, and
students are later tested. Interleaving (rather than blocking) typically improves final test
scores, and this benefit is defined here as the interleaving effect. A simple example of an
interleaving study, though it involved motor skills rather than cognitive skills, was reported
by Hall et al. (1994). They asked college baseball players to practice hitting three types of
pitches (fastball, curveball, and change-up), and the 45 practice pitches were either blocked
by type (15 fastballs, 15 curveballs, and 15 change-ups) or interleaved (fastball, curveball,

Interleave

Block

test delay

Learning Phase

Test
a1 a2 a3 b1 b2 b3 c1 c2 c3

a1 b1 c1 b2 c2 a2 c3 b3 a3

B     Spacing Experiment

test delay

Learning Phase

Space

Mass
Test

a1 a2 a3

a1 a2       a3

A     Interleaving Experiment

Fig. 1 Prototypical design of interleaving experiment (a) and spacing experiment (b). In the interleaving
study, three exposures to one concept (e.g., three questions on pendulums) are blocked together (a1a2a3) or
interleaved with exposures to similar concepts (e.g., free fall and incline motion). In the spacing experiment,
multiple exposures to one concept are separated by spacing gaps or massed in immediate succession. Neither
interleaving nor spacing alters the nature or number of learning exposures, yet both interventions typically
improve test scores
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change-up, etc.). Interleaving led to superior hitting on a final test requiring batters to hit
pitches of each type without knowing the type of pitch in advance, as in a real game.

The remainder of this review is devoted to interleaving. For reasons of clarity, summaries
of findings are not contained in a single section but instead distributed through the review.
Also, this review provides only an overview of the research on interleaving, and much of the
discussion is instead devoted to the potential efficacy and implementation of interleaving in
the classroom. A comprehensive review of the interleaving literature can be found elsewhere
(e.g., Dunlosky et al., in press).

Category Induction Learning

A recent spate of interleaving research was inspired by a series of studies reported by
Kornell and Bjork (2008). In these studies, college students learned to distinguish among
the styles of different artists by viewing landscape paintings by each artist. The task was
challenging because the artists had similar styles (Fig. 2). In one of the studies (Experiment
1b), for instance, subjects viewed six paintings by each artist, one at a time, and each
painting appeared with the artist’s name. In the blocked group, paintings were grouped by
artist so that subjects first saw all six paintings by Artist A, followed by all six paintings by
Artist B, and so forth. The interleaved group saw one painting by A, followed by one
painting by B, and so forth, until they had cycled through the list of artists six times. On the
final test, subjects saw previously unseen paintings by each artist and tried to select the
artist’s name from a list. Interleaving improved test scores, 59 vs. 36 %, Cohen’s d01.28.

The artist identification task is a category induction task because the paintings by each
artist constitute a category, and subjects must learn to identify the category to which a
previously unseen painting belongs. This means that subjects cannot perform the task by
merely memorizing who painted each of the paintings seen during the learning phase. They
must instead learn to recognize, consciously or otherwise, the features of an artist’s paintings
that distinguish it from paintings by other artists. The features that characterize an artist’s
style are learned through induction because subjects must generalize from specific instances
(i.e., specific paintings).

The benefit of interleaving on category induction has been demonstrated several times in
recent years. In one of these studies, for instance, 3-year-old children were shown novel
objects one at a time and told each object’s name (wug). Similar objects had the same name
(e.g., each rattle-like shape was called a “wug”). Children who saw the objects in an order
that was interleaved (wug, dax, blicket, etc.) rather than blocked (wug, wug, wug, dax, dax,
dax, etc.) were better able to name previously unseen objects on a subsequent test (Vlach et
al. 2008). More recently, Wahlheim et al. (2011) reported two studies in which subjects
learned to distinguish among 12 different families of birds (e.g., finches, orioles, and
warblers). On each trial, subjects saw two birds belonging to the same family or different
families. The simultaneous presentation of two birds from different families is akin to
interleaving because members of different categories are juxtaposed, and this different-
bird strategy led to superior bird identification on the final test.

Why Does Interleaving Improve Discrimination Learning?

While the results described thus far demonstrate that interleaving can improve students’
ability to distinguish among similar concepts, these findings do not point to a particular
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explanation of why this occurs. Two plausible explanations are explored in this section.
Although the two accounts are not mutually exclusive, one is not supported by recent data.

By one of the two accounts, the interleaving effect is not an effect of interleaving per se
but instead an artifact of spacing, which is a well-known intervention whereby exposures to
a single concept are spaced apart (a1…a2…a3) rather than massed in immediate succession
(a1a2a3). For example, a reading teacher who ordinarily presents a list of new “sight words”
by cycling through the list two times in immediate succession (massing) could instead
separate the two cycles one hour apart (spacing). A typical spacing experiment is illustrated
in Fig. 1b. The difference between interleaving and spacing is subtle but critical: spacing

A Six paintings by one of the artists

B One painting by each of the six different artists

Fig. 2 Sample of paintings used in Kornell and Bjork (2008). Subjects saw paintings one at a time. In the
blocked study condition, paintings were grouped by artist so that subjects first saw six paintings by Artist A,
followed by six paintings by Artist B, and so forth. In the interleaved condition, subjects saw one painting by
A, followed by one painting by B, and so forth, until they had cycled through every artist six times. On a final
test requiring subjects to identify the artist for previously unseen paintings, interleaving group outscored the
blocked group, 59 vs. 36 %
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describes the scheduling of exposures to a single concept (A), and interleaving describes the
scheduling of exposures to multiple concepts (A, B, and C).

Although interleaving and spacing are different interventions, the two are inextricably linked
because interleaving inherently introduces spacing. That is, when exposures to multiple concepts
are interleaved (a1b1c1b2c2a2c3b3a3) rather than blocked (a1a2a3b1b2b3c1c2c3), the exposures to
any one of the concepts are spaced (a1…a2…a3) rather than massed (a1a2a3). This means that a
typical experimental comparison of interleaving and blocking is confounded, and that any
benefit of spacing works in favor of the interleaving effect. This account is hardly a straw man
hypothesis because spacing can dramatically improve learning scores on a final test—a finding
known as the spacing effect. The spacing effect has been demonstrated in hundreds of studies,
including ones with learningmaterials drawn from the classroom (e.g., Austin 1921; Bahrick and
Phelps 1987; Bird 2010; Bloom and Shuell 1981; Carpenter et al. 2009; Cepeda et al. 2009;
Reynolds and Glaser 1964; Metcalfe et al. 2007; Seabrook et al. 2005).

In order to assess whether the interleaving effect is a spacing effect in masquerade, a few
recent studies have compared the effects of interleaving and blocking while controlling for
the effect of spacing. In one of these studies, Kang and Pashler (2012) used the artist
identification task described above. Subjects saw paintings by three artists (A, B, and C).
One group of subjects saw the paintings in an interleaved order (a1b1c1a2b2c2a3b3c3 etc.),
where b3 represents the third paintings by Artist B. Another group of subjects saw the
paintings in an order that was blocked and spaced (a1….a2….a3….b1….b2….b3….c1….c2…
c3…. etc.), with each painting followed by an unrelated cartoon drawing. This allowed the
experimenters to ensure that the duration of the spacing gap between any two successive
paintings by the same artist (such as b2 and b3) was the same for all subjects. Despite this
control, the interleaving group outscored the blocked-spaced group on the final test (68 vs.
61 %, d00.78). This same paradigm was used in a mathematics learning study reported by
Taylor and Rohrer (2010), which is described in the section on mathematics learning, and
they also found an interleaving effect after controlling for the effects of spacing (similar
findings have been reported with perceptual learning tasks as well, e.g., Mitchell et al.
2008). By disentangling the contributions of spacing and interleaving, these studies demon-
strated that interleaving per se, and not the incidental spacing that accompanies interleaving,
can sharply improve learning.

If the spacing effect is not responsible for the interleaving effect, how does interleaving
improve discrimination learning? The most parsimonious explanation is that interleaving
makes it easier for learners to compare and contrast members of one category with members
of a different category. Specifically, members of one category (e.g., finches) might differ
from members of another category (e.g., sparrows) on a number of dimensions, and the
juxtaposition of two members from different categories helps learners appreciate which
dimensions (or features) are most relevant to the task of discrimination (e.g., Kang and
Pashler 2012; Kornell and Bjork 2008; Mitchell et al. 2008; Wahlheim et al. 2011).

Mathematics Learning

Interleaving appears to benefit mathematics learning as well, yet most mathematics students
devote most of their practice time to blocked practice. This is because each lesson in most
mathematics textbooks is followed immediately by a set of practice problems devoted to that
lesson. For example, a lesson on ratios might be followed by 20 ratio problems. Not every
problem in a blocked assignment is identical in form—for instance, some of the problems
might be word problems—but the problems within a blocked assignment are generally based
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on the same concept or procedure. By contrast, in a few mathematics textbooks, each lesson
is followed by an assignment consisting primarily of problems from previous lessons. For
example, instead of seeing 20 ratio problems after a lesson on ratios, students might work 5
ratio problems (blocking) and one problem on each of 15 earlier topics (interleaving). The
displaced ratio problems appear in later assignments so that, by the end of the course,
students have seen the same problems as they ordinarily would.

Several mathematics learning studies have compared interleaving and blocking, and the
first of these was reported by Mayfield and Chase (2002). In their experiment, college
students in need of mathematics remediation attended dozens of sessions over a period of
several summer months in which they solved problems using five algebraic rules about
exponents (e.g., axm ·bxn0abxm+n). Two of the three subject groups employed practice
strategies that essentially provided interleaved and blocked practice (though logistical
constraints led to various complicated confounds between these two groups). Subjects were
tested 1 or 2 days after the last practice session, and they returned for a second test between 4
and 12 weeks later, depending on their availability. On both tests, the interleaved practice
group outscored the blocked practice group by factor of at least 1.3. In short, although
procedural complications cloud the interpretation of this study, its results appear to favor
interleaving.

Three other studies have directly compared interleaved and blocked mathematics prac-
tice. In one of these studies, Rohrer and Taylor (2007) taught college students to find the
volumes of four obscure solids (Fig. 3a). Every subject saw the same problems, but the four
kinds of practice problems were interleaved or blocked (Fig. 3b). Subjects saw the solution
to each practice problem immediately after they tried to solve it. The interleaved group
performed worse than the blocked practice group during the practice session because the
blocked group knew the appropriate strategy in advance. However, interleaving boosted
scores on a final test, 63 vs. 20 %, d01.34 (Fig. 3c). In a similar study with the same four
kinds of problems, LeBlanc and Simon (2008) also found an effect of interleaving. Finally,
in a study reported by Taylor and Rohrer (2010), young students (ages 10 and 11) were
taught to solve four kinds of mathematics problems relating to prisms (e.g., if the base of a
prism has 9 sides, how many edges does the prism have?), and a test 1 day later revealed an
interleaving effect, 77 % vs. 38 %, d01.21. Further analysis revealed that this test benefit of
interleaving was due solely to the fact that blocking group made more errors of the kind in
which a student used the strategy that was appropriate for one of the other three kinds of
problems. In other words, the entire interleaving effect was due to the elimination of
discrimination errors.

These findings suggest that interleaved mathematics practice helps students learn to
distinguish between different kinds of problems. This is a critical skill because solving a
mathematics problem requires that students first identify what kind of problem it is, which
means that they must identify those features of a problem that indicate which concept or
procedure is appropriate (e.g., Crowley et al. 1997; Kester et al. 2004; Siegler and Shrager
1984). Identifying the kind of problem is not always easy. For example, a large portion of
algebra is devoted to solving equations, but the instruction, “Solve for x,” does not indicate
which one of several solving strategies is appropriate. For instance, students must use the
quadratic formula to solve some equations (e.g., x2−x−100), and they must factor to solve
others (e.g., x3−x00). As noted in the first section of this paper, this kind of discrimination
task is essentially a categorization task because students must identify the category of
problems to which a particular problem belongs (e.g., an equation that can be solved by
factoring). In other terms, solving a mathematics problem requires students to know which
strategy is appropriate and not only how to execute the strategy.
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With blocked practice, however, students need not identify an appropriate strategy
because every problem in the assignment can be solved by the same strategy. For example,
if a statistics assignment includes a dozen problems requiring students to assess the statistical
significance of data obtained with a particular kind of research design, and every problem
requires the same statistical test (e.g., repeated-measures t test), students know the appro-
priate statistical test in advance. This is problematic because students should ultimately learn
how to select the appropriate statistical test on the basis of the research design, and this skill
is arguably more important than knowing how to perform the statistical test. In essence,
blocking provides scaffolding. This might be useful when students see a new kind of
problem, but students who receive only blocked assignments do not have the opportunity

Practice Session 1            Practice Session 2

1 wk

Practice Session 1 Practice Session 2 Test

Proportion 

    Correct

0

1

Interleaved

Blocked

.63

.20

.87

.43

.91

.78

Blocked

Interleaved
Test

a5 b5 c5 d5 b6 d6 a6 c6 …

a5 a6 a7 a8 b5 b6 b7 b8 …

a1 b1 c1 d1 b2 d2 a2 c2 …

a1 a2 a3 a4 b1 b2 b3 b4 … 1 wk

A

B

C

Fig. 3 The stimuli (a), procedure (b), and results (c) of a mathematics learning experiment (Rohrer and
Taylor 2007). Subjects solved four different kinds of problems (a, b, c, and d), and only the order of the
problems was varied. Interleaving reduced practice scores yet tripled test scores (d01.34). Error bars indicate
plus or minus one standard error
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to practice without this crutch. Of course, when students see problems during a cumulative
exam, standardized test, or subsequent course, the crutch is snatched away.

In essence, the pedagogical value of a practice problem is altered when the problem
appears within a blocked assignment, as illustrated by the following word problem from a
popular textbook (p. 99; Carter et al. 2011):

Rhode Island is the smallest state in the United States. Its area is about 1/6 the area of
New Hampshire. If the area of New Hampshire is about 9,270 square miles, what is
the approximate area of Rhode Island? Answer ¼ 1 6=ð Þ � 9270 ¼ 1545 square miles

This problem is solved by multiplying the two given numbers, and almost all
middle school students can multiply with the aid of a calculator (which is allowed
during most standardized tests). However, this problem is challenging because stu-
dents must first infer that they should multiply. Yet no such inference is needed if the
problem appears immediately after a group of problems explicitly requiring the
strategy (i.e., multiply the two given numbers), which is exactly where this problem
appears (Fig. 4). In other words, blocked practice allows students to solve this word
problem without reading any words and yet most word problems appear immediately
after a group of problems requiring the same procedure. This might partly explain the
notorious difficulty of word problems (Rohrer 2009).

In summary, proficiency in mathematics and certain sciences requires that students
learn to choose an appropriate strategy for each kind of problem. Students have an
opportunity to practice this skill when problems of different kinds are interleaved,
whereas blocked practice allows students to safely assume that each problem can be
solved with the strategy used to solve the previous problem. A number of mathemat-
ics learning studies have shown that interleaving (rather than blocking) improves
scores on final tests of learning, yet the vast majority of problems in most mathe-
matics textbooks appear within a blocked assignment.

Multiply. Write in simplest form.

1.  (3/5) · (5/7)    2.  (4/5) · (3/8) 3. (6/7) · (7/6)

4. (- 1/8) · (4/9) 5. (- 2/9) · (3/8) 6. (- 12/13) · (- 2/3)

7.  (1 1/3) · (5 1/2) 8. (2 1/2) · (1 2/5) 9. (- 6 3/4) · (1 7/ 9 )

10. Rhode Island is the smallest state in the United States. 
Its area is about 1/6 the area of New Hampshire. If the 
area of New Hampshire is about 9,270 square miles, 
what is the approximate area of Rhode Island? 

Glencoe McGraw-Hill (Grade 8) 

Fig. 4 Excerpt of blocked assignment from Grade 8 mathematics textbook. After students solve problems 1–9,
which explicitly require the multiplication of the two given numbers, they can safely assume that Problem 10 also
demands that they multiply the two given numbers. This illustrates that blocked practice sometimes allows
students to solve a word problem without reading any words. If Problem 10 had instead appeared within an
interleaved assignment, surrounded by different kinds of problems, students would need to infer the appropriate
strategy on the basis of the problem itself (excerpt from Carter et al. 2011, p. 99)
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Caveats and Limitations

Although the studies reviewed here uniformly support interleaving, there are several reasons
to be cautious about its utility in the classroom. Most notably, studies of interleaving have
not employed ecologically valid procedures. For instance, in most of the studies cited here,
the learning phase was limited to a single session, and the delay between the learning phase
and the test was less than 1 h. The case for interleaving requires evidence from classroom-
based experiments with educationally meaningful procedures because many promising
interventions have fizzled in the classroom.

Another shortcoming of the literature is the absence of studies assessing a combination of
blocking and interleaving, which might be the optimal strategy for complex learning
materials. For example, the first portion of each mathematics assignment might include a
small block of problems on the concept or procedure learned that day, with the remainder of
the assignment devoted to problems based on previous lessons. This hybrid approach might
find greater acceptance in the classroom because students and teachers are accustomed to
blocking.

Another caveat is that teachers and textbooks already employ interleaving for some kinds of
material. For example, some sets of easily confused terms (e.g., solute, solvent) are inherently
juxtaposed in instructional materials because the terms are intrinsically related (a solute is a
substance dissolved in a solvent). Likewise, some pairs of similarly spelled words (allusion–
illusion or assent–ascent) are commonly presented to students as a pair so that the distinction is
more salient.

The most notable limitation of interleaving, however, is that its benefits are likely limited
to difficult discriminations. The learning tasks in the studies cited in this review were
obviously chosen to produce discrimination errors (e.g., the artist paintings in Fig. 2), and
discriminations of this subtlety are rarely encountered in the classroom. If these studies had
instead required subjects to distinguish between dissimilar concepts or terms, the size of the
interleaving effects would have almost certainly been smaller. This boundary condition
sharply constraints the utility of interleaving.

Feasibility of Implementation

In addition to questions surrounding the generality and efficacy of interleaving, little is
known about its feasibility. The successful implementation of any intervention depends on
factors other than its efficacy, including its cost, ease of use, and perceived efficacy. Each of
these factors is considered here.

Interleaving is not expensive. Interleaving can be adopted without changes to curricula,
and creators of learning materials can incorporate interleaving by rearranging examples,
questions, or problems. For instance, in revising a textbook for its next edition, the lessons
can remain intact, and one or two questions could be drawn from each blocked assignment
and used for interleaved assignments. Consequently, the cost and effort of creating inter-
leaved assignments can be shouldered by publishers rather than teachers and taxpayers.

On the other hand, students might balk because interleaving increases the difficulty of a
question or problem. A group of questions or problems are easier when all relate to the same
topic or concept. By contrast, answering a set of interleaved biology questions might require
students to consult material presented in previous chapters, and an interleaved mathematics
assignment prevents students from simply repeating the same procedure throughout the
assignment. Students will therefore make more errors, and work more slowly, when

364 Educ Psychol Rev (2012) 24:355–367



assignments are interleaved. This in itself is not problematic because the aim of classroom
instruction is ultimate mastery, not error-free learning. Still, some students might be unwill-
ing to make the extra effort. In this scenario, interleaving is like bad-tasting cough syrup—
ineffective because children refuse to use it. Future research might examine how the
likability of interleaving can be improved. For instance, each question in an interleaved
biology assignment could include the page number of a relevant example or definition
appearing earlier in the text.

The added challenge imposed by an interleaved order might also lead students and
teachers to falsely yet reasonably conclude that interleaving is less effective than blocking.
Although the relative ease of blocked assignments is due to the fact that blocking provides
scaffolding, students and teachers may not be aware of this. Consequently, blocking leads
students to believe that they understand material better than they actually do—what Son and
Kornell (2010) have called an illusion of knowing. These kinds of poor metacognitive
judgments have been demonstrated many times (e.g., Dunlosky and Lipko 2007; McCabe
2011; Metcalfe 2000).

In fact, several studies have shown that learners doubt the efficacy of interleaving even
after they have tried it. For instance, in one of the artist learning studies (Kornell and Bjork
2008), subjects relied on blocking for some artists and interleaving for others, and, imme-
diately after the final test, they were asked to indicate which one of the two learning
strategies, if either, “helped them learn more.” Among subjects who did benefit from
interleaving, only 25 % believed that interleaving was more helpful. Interleaving also failed
to impress subjects in the earlier-described bird learning study (Wahlheim et al. 2011),
although the details of their analysis are beyond the scope of this review. Finally, in a
mathematics learning study reported by LeBlanc and Simon (2008), interleaving roughly
doubled test scores, yet subjects’ predictions of their test scores, made immediately after
their last practice problem, were barely affected by whether their practice was interleaved or
blocked.

The broader point is that the feasibility of an intervention depends partly on whether
students, teachers, and creators of learning materials are convinced of its benefits. This is
more problematic than it should be because instructional methods are often chosen with little
regard for evidence. For instance, more than a century of research has shown that spacing is
an extremely effective learning strategy, yet massing remains more popular in the classroom
despite numerous appeals (e.g., Bjork 1979; Cepeda et al. 2008; Dempster 1989; Halpern
2008; Rohrer and Pashler 2007; 2010; Schwartz et al. 2011; Willingham 2002). As many
others have argued, teachers, those who train teachers, and researchers need a greater
appreciation for experimentally supported instructional methods (e.g., Robinson et al.
2007; Slavin 2002).

Summary

When students must learn to distinguish among similar concepts (or terms or principles or
kinds of problems), the findings reviewed here suggest that the exposures to each of the
concepts should be interleaved rather than blocked (Fig. 1a). For certain kinds of materials
(such as the paintings in Fig. 2b), this interleaving effect may occur because interleaving
guarantees that exposures to different concepts are juxtaposed, making it easier for learners
to identify the feature that distinguishes members of one category from another. With
mathematics problems, interleaved practice requires students to choose the appropriate
strategy for a problem because each problem is different from the previous one.
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In spite of these results, there are reasons to be cautious about the utility of interleaving in
the classroom. The findings reviewed here were obtained in laboratory settings with
procedures lacking ecological validity, and long-term, classroom-based studies are needed
before interleaved can be recommended without qualification. There are also questions
about its feasibility. Although the financial costs of implementing an intervention are
relatively inexpensive because learning materials need only be rearranged, interleaved
assignments can be more challenging for students because they do not know the relevant
concept or procedure before reading each question or problem.

In brief, the limited evidence prohibits a wholesale endorsement of interleaving. At the
same time, however, it seems foolhardy for students to rely solely on blocking when the data
clearly favor interleaving over blocking. As a first step, then, it seems prudent to recommend
that at least a portion of the exposures to related concepts be interleaved.
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