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Numerous studies have revealed that people possess
striking false beliefs about the qualitative motion of an ob-
ject as it falls to the ground or rolls along an incline, even
though these beliefs are at odds with common experi-
ences. But the evidence for these beliefs is typically drawn
from tasks in which participants base their judgments on
a diagram or other static stimulus, like those in Figures 1A
and 1B. In the bomb drop task of Figure 1B, for example,
many people falsely predict that the bomb will fall straight
down after it is dropped from a horizontally moving plane
(McCloskey, Washburn, & Felch, 1983). 

Many of these beliefs prove unpopular once people have
the opportunity to observe a computer animation that con-
forms to the belief. In one such study of the bomb drop
task, for instance, observers rated the impossible straight-
down trajectory as less natural than the correct Newtonian
trajectory (Kaiser, Proffitt, Whelan, & Hecht, 1992). Hence,
although a straight-down trajectory may seem natural to
those relying solely on the diagram in Figure 1B, it does not
appear realistic to those looking at an animated version.
Several authors have noted that this dissociation illustrates
a distinction between people’s consciously available in-
formation about motion, or explicit knowledge, and their
unconscious implicit knowledge (e.g., Hecht & Bertamini,
2000; Hubbard, 1998; Kozhevnikov & Hegarty, 2001).
Hence, whereas some tasks may rely on people’s explicit
knowledge about motion, other tasks may tap their im-
plicit knowledge. 

The present experiments concern people’s qualitative
understanding of an object’s incline speed along a nonlin-
ear incline, as can be illustrated by the motion of roller
coasters, skis, sleds, bicycles, toy cars, and so forth. The
experiments specifically address a false belief known as

the slope–speed belief, which was shown to be popular in
a previous study gauging people’s explicit knowledge
(Rohrer, 2002). The present experiments used both an ex-
plicit task (Experiment 1) and two implicit tasks (Experi-
ments 2 and 3), with the latter designed to measure whether
the slope–speed belief is a part of people’s implicit knowl-
edge. Further details of the slope–speed belief are given
after the following review of the literature regarding ani-
mation studies of false beliefs. 

False Beliefs That Appear Unrealistic 
Once Animated 

One commonly investigated false belief is illustrated by
the C-tube task in Figure 1A. The marble is propelled
through the tube lying flat on a horizontal surface, and par-
ticipants predict the shape of the marble’s path after it
exits the tube. By Newton’s second law, the marble rolls
straight in the absence of nonzero net force. Yet some peo-
ple predict that the marble will roll along a curved path
after it leaves the tube (Catrambone, Jones, Jonides, &
Seifert, 1995; Kaiser, Jonides, & Alexander, 1986; Kaiser,
McCloskey, & Proffitt, 1986; McCloskey, Caramazza, &
Green, 1980; McCloskey & Kohl, 1983). To assess the in-
fluence of animation on this task, Kaiser, Proffitt, and An-
derson (1985) presented either diagrams or animations il-
lustrating the various choices; animation greatly benefited
performance. 

Similarly, Kaiser et al. (1992) showed that animation
provided the insight necessary for solving other classic
problems. One of these studies (McCloskey et al., 1983)
concerned the bomb drop task shown in Figure 1B and de-
scribed in the beginning of the introduction. Because the
bomb has horizontal speed when it is released, it continues
to move forward as it falls. McCloskey et al. found that many
adults predict instead that the bomb will fall directly down-
ward. However, Kaiser et al. (1992) found that the New-
tonian animation was preferred over the “straight-down”
animation. These authors also examined the influence of
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animation on the broken pendulum problem, illustrated in
Figure 1C. Here, the suspended bob swings back and forth
until the string breaks at the instant the bob reaches the
highest point along its arc. Because the bob has no hori-
zontal speed at this point, the bob falls directly downward.
Yet many adults choose the nonvertical trajectory shown
in Figure 1C (see, e.g., Caramazza, McCloskey, & Green,
1981). When these options were animated in Kaiser et al.’s
(1992) study, however, observers rated the Newtonian an-
imation as the more natural of the two possibilities.

Perceptually Realistic False Beliefs
The animated versions of a few false beliefs appear nat-

ural. In Hecht and Bertamini (2000), participants consid-
ered the speed of a ball thrown by one person to another,

with the ball first gaining and then losing altitude during
its trajectory. In the explicit knowledge task, participants
saw a diagram of this parabolic trajectory and selected the
point of greatest speed. Many of them mistakenly pre-
dicted that the ball would reach its maximum speed at a
point well beyond its release from the thrower’s hand
when, in fact, the ball begins to slow immediately upon
release as it gains altitude. In a second experiment employ-
ing an implicit task, animations depicting this “magical
post-release acceleration” were rated as more natural than
the Newtonian animations for certain angles of release.
The authors thus concluded that this belief is a part of
both “explicit and implicit understanding” (p. 730). 

In another study of trajectory motion, Kozhevnikov and
Hegarty (2001) described an error regarding the effect of
mass on an object thrown directly upward. In a study gaug-
ing explicit knowledge, participants predicted whether a
heavy ball or a light ball would first reach a given height—
that is, which ball moves faster when thrown upward with
equal force. In truth, the heavier ball reaches any given
height before the lighter ball, because lighter objects are
more susceptible to the impeding effects of air resistance.
(This is why a thrown feather rapidly loses speed.) Yet
most participants predicted that the lighter object was
faster. In a second study designed to measure implicit
knowledge, participants observed animations of an “up-
wardly thrown” square that was either large or small and
thus purportedly perceived as “heavy” or “light,” respec-
tively. Just before the square reached its maximum height,
it disappeared and then reappeared 150 msec later as a sta-
tionary square. Observers then judged whether the square
was located where it had disappeared. On average, the “re-
membered position” was too high, as if the mental repre-
sentation of the square continued upward during its 
absence from the screen. This error is known as “repre-
sentational momentum” (e.g., Hubbard, 1995). Notably,
the size of the error was greater for the “light” square than
for the “heavy” square, in keeping with the belief that
lighter objects move faster than heavier objects during up-
ward motion. Thus, Kozhevnikov and Hegarty concluded
that this false belief was a part of these participants’ im-
plicit understanding. 

Incline Speed
An object’s incline speed at any point is unaffected by

the slope at that point, and this is true regardless of the
ramp shape. Formally, an object’s incline speed (v) is
given by

v 5 (2gy)1/2, (1)

where y denotes the object’s net vertical drop since its re-
lease, g equals its rate of acceleration near the surface of
the earth, and k depends on the object’s shape and its dis-
tribution of mass (e.g., Halliday & Resnick, 1981). The
value of k equals 10/7 for uniformly dense spheres like the
marbles considered in the present experiments, although
the value of this parameter has no qualitative effect on an

Figure 1. Previously reported false beliefs regarding position.
(A) C-tube task. A marble is shot through the tube. (B) Bomb
drop task. A horizontally flying plane drops a bomb. (C) Broken
pendulum task. The string breaks just as the swinging bob
reaches its highest point.
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object’s incline speed. By substituting these values for k and
g in Equation 1, the incline speed of a marble is given by 

v 5 3.74y1/2. (2)

Notably, incline speed (v) simply varies in direct propor-
tion to the square root of its net vertical drop ( y), and this
is true for any object that rolls or slides if the impeding ef-
fects of friction are negligible. This elegant relation is also
true for free fall; Galileo discovered it by carefully timing
the descent of a rolling sphere along linear inclines (Craw-
ford, 1996; Drake, 1989). For the present study, though,
only one implication of Equation 2 is relevant: As a mar-
ble rolls along an incline of any shape, its speed at any
point depends on its net vertical drop at the point. 

The presence of friction can complicate matters, be-
cause friction impedes speed. This complexity cannot be
ignored, of course, because participants’ views are shaped
by experiences that are sometimes fraught with friction.
Still, it is worth noting that friction often has very little ef-
fect on rolling speed. For instance, once a roller coaster is
released from the top of the first hill, it can ascend an im-
mediately subsequent hill that is virtually as high as the
first. Nevertheless, participants may assume the presence
of friction, and this possibility must be considered. 

Duration of a Descent 
Although the present experiments concern an object’s

incline speed, it is important to clarify the relation be-
tween an object’s speed at a given point and the duration
of its descent from the start to that point. As an illustra-
tion, Figure 2 includes two ramps that share a starting
point and a finish point. Thus, the two ramps yield the
same net vertical drop, and, consequently, both ramps pro-
duce the same speed at the finish (Equation 2). However,
the two ramps produce different descent durations. In fact,
the curved ramp yields a much quicker descent, even
though the linear ramp has the shorter distance. In effect,
the greater initial steepness of the curved ramp provides
rapid acceleration, and the concomitant speed more than
compensates for the longer rolling distance. In other
terms, the initial steepness of the curve ramp allows the

marble to quickly descend to points of lower elevation
where speed is greater. In fact, the shape of the curve in
Figure 2 is known as the curve of the brachistochrone
(“shortest time”), because it is optimally quick (e.g.,
Anton, 1980; Rohrer, 1994, 2002). 

A simpler task concerning descent duration is the race
question. As shown in Figures 3A and 3B, this is a race be-
tween two marbles along a “dip ramp” and a “hill ramp.”
These ramp shapes are mathematically specified in Ap-
pendix A. The two ramps are equal in length and share a
start point and a finish point. Yet the dip ramp is much
quicker, because the points within the “dip” lie at a greater
net vertical drop than the points within the “hill.” Hence,
speed at every point within the “dip” is faster than speed
at every point within the “hill.”

The race question is difficult. In a study reported by
Rohrer (2002), more than half of a college student sample
incorrectly predicted a tie after viewing a three-dimensional
model of the ramps (but not observing any motion). In the
written justifications for this false prediction, many ex-
plained erroneously that both the dip and the hill include one
“fast” downhill and one “slow” uphill and therefore “cancel
each other out.” Hence, although speed actually depends on
vertical drop, these students seemingly attributed incline
speed to slope. These responses suggested the prevalence of
a false belief that serves as the focus of the present study.

The Slope–Speed Belief
The slope–speed belief holds that an object’s incline

speed at any point depends on the slope at the point. Two
instantiations are specified by this belief. First, an object’s
incline speed is greater at a “downhill point” than at an
“uphill point.” Second, an object’s incline speed is greater
at a steep “downhill point” than at a gradual “downhill
point.” (The terms “downhill point” and “uphill point” are
used to describe a point on a downhill or uphill, respec-
tively, although, technically, a point does not have slope.)

The slope–speed belief is violated by real-world expe-
riences. A roller coaster’s speed near the top of the first
downhill is slower than its speed near the bottom of the
following uphill, because speed depends on net vertical
drop. The same is true for a skateboarder who traverses a
U-shaped ramp, as speeds are greatest along the flat por-
tion at the bottom. Other examples include the incline speed
of skiers, nonpedaling cyclists, and drivers of toy cars.

Nevertheless, the slope–speed belief proved popular in
a study by Rohrer (2002) that included the speed question
shown in Figure 3C. This scenario is not a race. Instead,
participants must predict which marble, if either, rolls
faster at the indicated critical point while observing a
three-dimensional model of each ramp (without having
the opportunity to observe any motion). Because an ob-
ject’s speed depends on its net vertical drop, incline speed
is greater at the “uphill point” than at the “downhill point”
(by Equation 2). Yet most of the participants incorrectly
predicted greater speed at the “downhill point,” consistent
with the slope–speed belief. Of these participants, virtu-
ally all explained their answer by citing the difference in
slope. That these participants attributed their responses to

Brachistochrone Question
    Which ramp provides
     a quicker descent?

Figure 2. The brachistochrone problem. In a race between
identical marbles, the curved ramp is quicker. Yet both shapes
produce identical speeds at the finish, as each ramp generates the
same net vertical drop. 
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slope illustrates that the slope–speed belief is a part of
their explicit knowledge. It remains unknown, however,
whether people also consciously believe that steep “down-
hill points” are faster than gradual “downhill points”—the
second instantiation of the slope–speed belief. Experi-
ment 1 addresses this question.

Experiments 2 and 3 examine whether the slope–speed
belief is part of people’s implicit knowledge. Both exper-
iments gauge the perceptual realism of computer anima-
tions depicting marbles rolling along nonlinear inclines at
speeds that conform to either the slope–speed belief or
Newtonian theory. If the “slope–speed animations” appear
realistic, it would suggest that the slope–speed belief is
held implicitly, outside people’s awareness. The implica-
tions of this finding, as well as a potential origin of the
slope–speed belief, are described in the General Discussion. 

EXPERIMENT 1

This experiment required participants to make predic-
tions about incline speed on the basis of a diagram, and the
task was designed to rely on their explicit knowledge about

motion. Participants estimated the finish speed for two dif-
ferent ramps, as detailed in Figure 4A. Although the pre-
cise finish speeds cannot be determined without additional
information, the ramps’ equal vertical drops ensure equal
finish speeds (as explained in the introduction). By the
slope–speed belief, however, finish speed is greater at the
ramp with the steeper finish point—that is, the convex ramp.

Notably, the two ramps differ with respect to both fin-
ish slope and the rolling distance between Points P and Q,
but this unavoidable confound worked against the slope–
speed belief. That is, the critical section adjoining Points P
and Q on the convex ramp is shorter than the correspond-
ing P–Q section along the linear ramp, and the shorter dis-
tance allows less “opportunity to gain speed.” This is a
reasonable (but erroneous) belief that was adopted by
some of the participants, thereby reducing the observed
support for the slope–speed belief. 

Method
Participants. Fifty undergraduates at the University of South

Florida participated in return for course credit. The sample included
41 women and 9 men. 

Figure 3. The speed and race questions. (A) The hill ramp and dip ramp. These shapes are mathematically speci-
fied in Appendix A. (B) The race question. Participants observed a three-dimensional model. (C) The speed ques-
tion. Participants observed a three-dimensional model.
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Procedure. Each participant answered the two questions shown
in Figure 4A, with the order of these two questions counterbalanced
across participants. In the questionnaire, the height of each ramp was
5 cm. The algebraic form of the convex ramp shape is detailed 
in Appendix B. 

Results and Discussion
The slope–speed belief proved popular, with 60% of the

students predicting incorrectly that the finish speed of the
convex ramp would exceed that of the linear ramp. Only
12% correctly predicted identical speeds for the two
ramps, and 28% predicted greater speed for the linear
ramp. (The popularity of the latter response presumably

reflects the greater P–Q distance along the linear ramp, as
described in the introduction to this experiment.) For the
slope–speed response, the observed proportion of 60%
was shown by a binomial test to significantly exceed chance
(z 5 4.00, p , .0001). In addition, the mean estimate of
finish speed for the convex ramp exceeded that of the lin-
ear ramp by more than 50% (41 vs. 27), as is shown in Fig-
ure 4B. This difference was shown to be statistically sig-
nificant by the nonparametric Wilcoxon test (T 5 270.50,
p , .001). 

In summary, most of the participants falsely predicted
greater speed at the “steeper point” than at the “gradual
point,” in spite of an intrinsic confound that worked
against the result. This finding is consistent with the erro-
neous view that an object’s incline speed at a “steep down-
hill point” is necessarily greater than its speed at a “grad-
ual downhill point,” consistent with the slope–speed belief.
Because this task relied on the participants’ explicit knowl-
edge, these results provide further evidence that the slope–
speed belief is a part of people’s consciously available
knowledge. The next two experiments examine whether
the slope–speed belief is also a part of their implicit
knowledge. 

EXPERIMENT 2

This experiment gauged the perceptual realism of com-
puter animations conforming to the slope–speed belief.
Both these “slope–speed animations” and the correspond-
ing Newtonian animations were presented on a computer
monitor, with the “marble” rolling down the convex ramp
shown in Figure 5A. Participants rated the “naturalness”
of each descent. 

The task was designed to assess participants’ implicit
knowledge and to minimize the contribution of explicit
knowledge. Specifically, in both the slope–speed anima-
tion and the Newtonian animation, the marble continu-
ously gained speed throughout its descent. Furthermore,
in both animations, this rate of increase was itself in-
creasing, which is to say that the marble accelerated pos-
itively at every point during its descent. 

But the two animations differed in degree. As an illus-
tration, Figure 5B indicates the marble’s speed at three ar-
bitrary points along the ramp. As shown, the marble’s speed
during the slope–speed animation initially lags behind its
Newtonian counterpart before accelerating dramatically
along the final portion. The Newtonian animation did not
incorporate friction, and the resulting implications are de-
scribed in the discussion of this experiment. 

Method
Participants. Twenty-f ive undergraduates at the University of

South Florida participated in return for course credit. This sample
included 20 females and 5 males; none had participated in Experi-
ment 1. 

Animations. A Visual Basic computer program paced each ani-
mation. The program accommodates nonlinear inclines by varying
acceleration with the use of an algorithm written by D.R. and de-
tailed in Appendix C. The “marble” was a red circle with a radius of
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Figure 4. Experiment 1. (A) Questions. Both ramps yield equal
finish speed, because speed depends on vertical drop. By the
slope–speed belief, finish speed is greater for the convex ramp,
because its finish slope is steeper. The speed of 10 at Point P is in
arbitrary units. The ramp shapes are specified in Appendix B.
(B) Results. Positive error bars represent one standard error. 
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2.6 mm, and it descended a blue curve with an approximate thick-
ness of 1 mm. The animation was two-dimensional. The marble in-
cluded no spokes or other cues about its rotational speed, although
participants were told that the red circle represented a rolling mar-
ble. At each point along the descent, an imaginary segment adjoin-
ing the marble’s center and its incline contact point remained per-
pendicular to the ramp. 

For the slope–speed animation, the marble’s speed obeyed Equa-
tion C1, as detailed in Appendix C. This equation was derived so
that the marble’s speed (in the slope–speed animation) was faster
than the Newtonian speed if and only if the slope at that point ex-
ceeded the average slope between start and finish. Thus, in the
slope–speed animation, incline speed was “too fast” at steeper-than-
average points and “too slow” at flatter-than-average points. For a

linear ramp, consequently, this feature ensures that the slope–speed
animation is identical to the Newtonian animation. Equation C1 in-
trinsically eliminates most or all of the difference between the dura-
tion of the slope–speed descent and the Newtonian descent, de-
pending on the ramp shape. In this study, the Newtonian descent was
14% quicker than the slope–speed descent (1,122 vs. 1,311 msec).
Thus, the duration is confounded with animation type. However, it is
doubtful that the difference in duration is perceptible when the stim-
uli are presented serially rather than concurrently. The difference was
eliminated entirely in Experiment 3 by use of a different ramp shape.

Procedure. Participants were tested individually. The animations
were shown on a 17-in. monitor, with the ramp’s horizontal distance
subtending about 15º of visual arc. The ramp dimensions are shown
in Figure 5A, and the ramp shape is algebraically specified in Ap-
pendix B. Each participant viewed the Newtonian animation and the
slope–speed animation three times each in an alternating order (i.e.,
A, B, A, B, A, B). The first to appear was determined randomly. Par-
ticipants observed the entire sequence before selecting their prefer-
ence, and the sequence was preceded by the following instruction:
“Choose the motion that appears more natural. That is, which choice
looks more like it would in the real world, if a marble rolled down a
ramp shaped exactly like the one on the screen?” After indicating a
preference, each participant provided a rating of each descent’s “nat-
uralness”  on a 5-point scale.

Results and Discussion
As can be seen in Figure 5C, the mean naturalness rating

of the slope–speed animation (M 5 4.12, SE 5 0.18) ex-
ceeded that of the Newtonian animation (M 5 3.12, SE 5
0.22) by a significant margin [t (24) 5 3.54, p , .01]. In
addition, 84% of the participants rated the slope–speed
animation as more natural than the Newtonian animation,
with the remaining 16% choosing the Newtonian anima-
tion. A binomial test of proportions revealed that this dif-
ference significantly exceeded chance (z 5 3.40, p ,
.001). This natural appearance of the slope–speed anima-
tion suggests that the slope–speed belief is a part of these
participants’ implicit knowledge, since the task appears to
preclude their reliance on explicit knowledge. 

One caveat warrants mention, though, since the percep-
tual realism of the slope–speed animation may have been
influenced by observers’ expectations of friction. The
magnitude of frictional force is less at points of greater
steepness, which is why a toboggan may not begin to slide
unless it is moved to a steeper portion of the hill (e.g., Hal-
liday & Resnick, 1981). Thus, the effect of friction varies
with slope in a manner that mirrors one aspect of the
slope–speed animation, and this might have contributed
to the participants’ preference for the slope–speed anima-
tion. This rival hypothesis cannot be ruled out in this ex-
periment, although the slope–speed animation differed
dramatically from a Newtonian descent under the influ-
ence of friction. For example, friction slows an object’s
speed at every point along the incline, regardless of slope,
whereas the slope–speed animation caused the marble to
roll at impossibly high speeds near the finish of the con-
vex ramp. This finish speed, as indicated in Figure 5B,
was more than three times greater than the finish speed of
an optimally quick, frictionless Newtonian descent. Nev-
ertheless, one aim of the next experiment was to explicitly
test this rival hypothesis. 
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EXPERIMENT 3

Participants in this study rated the naturalness of ani-
mated descents conforming to either the slope–speed be-
lief or Newtonian theory. This experiment differed from
Experiment 2 in several respects. First, the animated de-
scents were presented on a large screen rather than on a
computer monitor. Second, the animations relied on the
dip ramp and hill ramp shown in Figure 3A. Unlike the
ramp in Experiment 2, these ramps included both uphill
and downhill sections. Third, both a “mild” and a “severe”
version of the slope–speed belief were animated, with
each participant rating three different animations for each
ramp shape: a Newtonian descent, a mild slope–speed de-

scent, and a severe slope–speed descent. These modifica-
tions were meant to extend the results of Experiment 2 and
also to boost ecological validity. 

The animations shared several qualitative characteris-
tics. In all three animations, for example, the marble rolled
at a constant speed along the horizontal sections of the
ramps. Likewise, in each animation, the marble required
more time to traverse the “hill” in the hill ramp than to tra-
verse the “dip” in the dip ramp. 

Of course, the animations differed in certain respects.
The diagram in Figure 6A includes arrows marking the
steepest points within the hill or dip, although these ar-
rows were not shown to participants. As indicated, the
Newtonian animation produced equal speeds at these two
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points, because these two points have equal net vertical
drops. For the slope–speed animations, however, speed at
the “downhill point” was greater than speed at the “uphill
point,” in keeping with the slope–speed belief. 

Method
Participants . A sample of 120 undergraduates at the University

of South Florida participated in return for course credit. The sample
included 96 women and 24 men, none of whom had participated in
Experiment 1 or 2.

Animations. The animations were projected on a large screen
with a resulting horizontal distance of 3 m. The hill ramp and dip
ramp shapes are specified in Appendix A and Figure 2A. The ani-
mations showed a red “marble” with a radius of 2.6 cm descending
a blue ramp with a thickness of 1.1 cm. The animation technique
was otherwise identical to that of Experiment 2.

For both the mild and severe versions of the slope–speed belief,
the marble’s speed again conformed to Equation C1 in Appendix C.
For the mild and severe slope–speed animations and the Newtonian
animation, the duration of the hill ramp and dip ramp descents equaled
1,718 and 1507 msec, respectively, with an error of 615 msec. 

Procedure. Participants were tested in groups, with each partic-
ipant sitting at a location within 15º of visual arc from the perpen-
dicular line of sight. Animations were presented in pairs, with each
consisting of one slope–speed animation and one Newtonian ani-
mation. Each participant observed two pairs of animations for each
ramp shape: mild slope–speed versus Newtonian, and severe slope–
speed versus Newtonian. In one of these two pairs, the Newtonian
animation appeared first. For each pair, participants observed each
animation three times in alternation before rating each on a scale
from 1 (very unnatural ) to 7 (very natural ). The critical instruction
read as follows: “Give a high rating if you believe that the marble
changes speed like it would in the ‘real world.’ But give a low rating
if the marble changes speed in a way that does not appear realistic.”

Results and Discussion
As shown in Figure 6B, observers preferred the slope–

speed animation to the Newtonian animation in every con-
dition. Specifically, the mean naturalness ratings of both
the mild and severe slope–speed animations significantly
exceeded that of the Newtonian animation for both the hill
and dip ramps (all ts . 2.00, all ps , .05). This percep-
tual realism is consistent with the view that the slope–
speed belief is part of people’s implicit knowledge of in-
cline speed. 

Notably, these results cannot be reconciled with a pref-
erence for friction-laden descent. For the hill ramp shape,
specifically, the addition of friction changes the speed of
a Newtonian descent in a manner that is opposite to the de-
viation given by the slope–speed belief. This is illustrated
by the marble’s speed at the two critical points on the hill
ramp marked by the arrows in Figure 6A. Specifically, in
the slope–speed animations, the marble rolled much more
slowly at the first indicated point (on the uphill) than at the
second point (on the downhill). By contrast, for a New-
tonian descent in the presence of friction, the marble
would roll faster at the first point than at the second point.
This is because friction reduces speed between any two
points of equal net vertical drop, which is why a marble
eventually stops as it rolls along a horizontal ramp. There-
fore, the results of this experiment are counter to the pre-
diction of the rival hypothesis attributing the perceptual
realism of the slope–speed animations to friction. 

GENERAL DISCUSSION

Two primary empirical findings are presented. In Ex-
periment 1, participants’ estimates of incline speed were
greater at the steeper of two “downhill points” despite the
equal vertical drops of the two points (Figure 4A). This
error is consistent with the slope–speed belief, and, be-
cause of the nature of this task, these data suggest that the
slope–speed belief is a part of people’s explicit knowl-
edge. In Experiments 2 and 3, participants observed com-
puter animations depicting a marble’s descent along a non-
linear incline, and they rated animations conforming to
the slope–speed belief as more natural than Newtonian an-
imations. This preference was observed for a monotonically
declining incline shape (Experiment 2) as well as incline
shapes with both uphill and downhill sections (Experi-
ment 3). This perceptual realism of the slope–speed belief
suggests that it is held implicitly, outside awareness.

On the Origin of False Beliefs
Some false beliefs appear to arise from people’s poor

choice of analogy. For the bomb drop task in Figure 1B,
for example, people might simplistically recall that “ob-
jects fall straight down when dropped,” without account-
ing for the bomb’s speed before it is dropped. Or, they might
recall one of countless films showing a stream of bombs
falling straight down from a plane without realizing that
the camera was inside a second plane flying alongside the
first plane. Likewise, the broken pendulum task leads
many people to recall having jumped from a swing just
before reaching the highest point along the arc, thereby
providing horizontal motion during the fall, whereas the
suspended bob falls once it reaches the apex. By these ex-
planations, it is not surprising that the animations corre-
sponding to these false beliefs appear unnatural. 

Other false beliefs appear to be adaptive and may arise
from people’s interactions with the environment (e.g.,
Hecht & Bertamini, 2000; Hubbard, 1998). As described
in the introduction, for example, Hecht and Bertamini
found that many people believe that an upwardly thrown
object continues to accelerate after it leaves the thrower’s
hand; Hecht and Bertamini concluded that this belief may
facilitate the act of throwing. In effect, the belief serves as
a heuristic that is often useful but sometimes misleading.
Similarly, there may also be an adaptive role of represen-
tational momentum. As described in the introduction, this
phenomenon is illustrated by unconscious errors regard-
ing an object’s location. These errors are consistent with
the effects of physical forces such as gravity and friction,
and appear to be intrinsically incorporated in people’s im-
plicit knowledge of motion (e.g., Bertamini, 1993; Hub-
bard, 1995, 1998).

Still others have provided evidence that an explicitly
held false belief may be adaptive. As shown by Proffitt
and his colleagues, people overestimate a hill’s slope when
standing at the base of the hill (Bhalla & Proffitt, 1999;
Creem & Proffitt, 1998; Proffitt, Bhalla, Gossweiler, &
Midgett, 1995). Moreover, these overestimates occur even
when people observe the hill from a side view that reveals
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the hill’s profile (Proffitt, Creem, & Zosh, 2001). These
authors noted that these overestimates reflect explicit
knowledge, and they attribute this overestimation to “re-
sponse compression.” This mechanism effectively magni-
fies sensitivity to small changes in stimulus magnitude,
and, in this case, increases the observer’s sensitivity to
slight differences in slope. This is useful, because even
slight increases in slope induce much greater physiologi-
cal demands, as evidenced by the sharp decline in people’s
maximum running speed on a treadmill after a slight in-
crease in the incline slope. 

The Origin of the Slope–Speed Belief
The slope–speed belief may reflect people’s experi-

ences with scenarios where slope is, in fact, an excellent
predictor of speed. Specifically, if an object is released
along an incline, its speed at a subsequent nearby point is
strongly predicted by the slope at that point if the incline
slope does not change appreciably along the section be-
tween these two points. For example, after a skateboarder
has rolled several meters along a steep section of road, he/
she is moving quickly. If the skateboarder instead rolls
several meters along a gentle slope, he/she is moving slowly.
This heuristic fails if the incline includes sharp changes in
slope within a narrow region, but such hills are rare. 

Slope also provides an excellent predictor of people’s
incline speed as they walk or run along a hill. When peo-
ple run at maximum speed, for instance, the slope at a
point strongly predicts their maximum speed at that point
unless there is a drastic change in slope over a brief dis-
tance. Quite simply, people run faster along steep sections
and slower along gradual sections. Again, there are ex-
ceptions, as is true with any heuristic. For instance, if a
runner descends a long steep hill before suddenly begin-
ning a steep uphill, the runner will initially run fast along
the uphill before decelerating in the face of gravity. In
most scenarios, however, slope roughly predicts incline
speed, and these experiences may explain the origin of the
slope–speed belief. By this account, the slope–speed be-
lief is a heuristic that facilitates people’s negotiation of in-
clines while impairing their performance on the tasks used
in the studies reported here. 
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APPENDIX B
Convex Ramp Specifications 

The convex shape is hyperbolic. The following derivations yield equations for vertical drop ( y)
and slope ( y¢) as a function of horizontal distance (x).

Basic Specifications 

With respect to a Cartesian plane with the positive y-axis directed downward, the ramp begins
at (0,0) so that x denotes the horizontal distance and y denotes the vertical drop of each point along
the ramp. The ramp has a horizontal run of r and a total vertical drop of d, so that it ends at (r,d )
with average slope d/r. 

The General Form

The ramp shape is given by 

y 5 (1/d 2 sr/d2 1 sr2/d2x)21. (B1)

Substitution reveals that the starting point (0, 0) and the finish point (r, d) satisfy Equation B1. The
differentiation of Equation B1 yields the slope, 

y¢ 5 2(1/d 2 sr/d2 1 sr2/d2x)22 (2sr2/d2x2)

5 s [rs/d 2 (x/d)(s 2 d/r)]22. (B2)

If x is replaced by its value at the finish point, r (the ramp’s run or horizontal distance), EquationB2
reveals that the slope ( y¢) at the finish equals s.

Ramp with Average Slope of 1/2 
If average slope equals 1/2, then d/r equals 1/2 as well. By substituting 1/2 for d/r in Equa-

tion B1, the vertical drop for a ramp with an average slope of 1/2 is given by 

y 5 (1/d 2 2s/d 1 4 s/x)21. (B3)

Likewise, substitution of 1/2 for d/r in Equation B2 reveals the slope, 

y¢ 5 s [2s 2 (x/d)(s 2 1/2)]22. (B4)

APPENDIX A
Specifications for Dip Ramp and Hill Ramp 

The precise specifications of the dip and hill ramps are illustrated by the Cartesian plots in Fig-
ure 3A. As shown, each ramp spans a net vertical drop of 1 and a horizontal distance of 8, yield-
ing an average slope of 1/8. Each unit corresponds to 10 cm for the apparatus in Rohrer (2002)
and to 37.5 cm in Experiment 3. 

Each ramp is composed of two horizontal line segments and four arcs. Each of these six sec-
tions spans exactly one or two horizontal units of the grid. With respect to this grid in Figure 3A,
the six sections are defined as follows:

(1) For x 5 [0, 2], a 53.13º arc with radius 2.5 and center (2, 21.5) 
(2) For x 5 [2, 3] and x 5 [7, 8], a horizontal line segment defined by y 5 1
(3) For x 5 [3, 4], a 30º arc with radius 2 and center at (3, 21) [hill] or (3, 3) [dip]
(4) For x 5 [4, 6], a 60º arc with radius 2 and center at (5, 2.46) [hill] or (5, 20.46) [dip]
(5) For x 5 [6, 7], a 30º arc with radius 2 and center (7, 21) [hill] or (7, 3) [dip] 

For the speed question in Figure 3C, both comparison points have an x-coordinate of 6 and lie
at the point of inflection (i.e., where concavity equals zero). Likewise, for the diagram in Fig-
ure 6A, the indicated points have x-coordinates of 4 and 6, respectively, and lie at points of in-
flection.

Each ramp shape is “everywhere differentiable.” That is, at any point conjoining two adjacent
sections (e.g., an arc and a line), the slope of both functions is the same at the conjoining point.
This eliminates cusps and therefore ensures a smooth roll.
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APPENDIX C
Animation Technique

The marble’s incline speed was determined by numerical integration. The total horizontal dis-
tance was divided into 11,600 equal intervals, and the corresponding (x,y) points satisfied either
the convex ramp equation (Appendix B) or the dip and hill ramp equations (Appendix A). The line
segments adjoining these 11,600 points effectively form part of a polygon that approximates a
curve with error less than 1 in 104. The “marble” moved along each linear descent at a constant
rate, with the duration determined by the following algorithm.

(1) For any line segment, let (x1,y1) and (x2, y2) equal the start and end point, respectively.
(2) Consequently, y 5 y2 2 y1 and x 5 x2 2 x1.
(3) By the Pythagorean theorem, the segment’s length (L) is given by L 5 [( x)2 1 ( y)2]1/2.
(4) The line segment has an angle of incline ( ) that is given by 5 arctan ( y/ x). 
(5) Let v1 and v2 denote the start speed and end speed of the segment, respectively.
(6) Note that vi 5 (kgyi)1/2, as described in the introduction (Equation 1). 
(7) Along each linear segment, the average speed (vavg) equals the mean of v1 and v2.
(8) The descent duration (t) therefore equals L/vavg (because distance 5 rate * time).

For the slope–speed animation, speed at each point was given by the equation, 

vs 2 s 5 vN [b( y¢/savg) 1 (1 2 b)], (C1)

where vN denotes the Newtonian speed given by the above algorithm, y¢ equals point slope (or the
first derivative), savg equals the ramp’s average slope (net drop/run), and b denotes the severity of
the slope–speed belief (0.25 in Experiment 2, and 0.04 or 0.08 in Experiment 3). Notably, Equa-
tion C1 ensures that incline speed exceeds the Newtonian speed if and only if the slope exceeds
the average slope. Thus, for linear inclines, slope–speed descent is Newtonian.

(Manuscript received March 2, 2002;
revision accepted for publication March 31, 2003.)

APPENDIX B (Continued)

Ramp With Average Slope of 1/2 and Finish Slope of 5 (Experiments 1 and 2) 
If finish slope (s) equals 5, Equations B3 and B4 simplify further, so that 

y 5 (20/x 2 9/d)21 (B5)

and

y¢ 5 20 (20 2 9x/d) 22. (B6)

The rearrangement of Equation B5 yields an expression for x in terms of y:

x 5 20 yd/(9y 1 d). (B7)

Finally, the expression for y¢ (slope) in terms of the variable y rather than x, which is the differen-
tial equation, is obtained by replacing x in Equation B6 with the right-hand expression in Equa-
tion B7. Subsequent algebraic simplification reveals that 

y¢ 5 [201/2 1 (9 * 201/2/d )y ]2 [4.472 1 (40.249/d )y]2. (B8)


