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In four experiments, subjects freely recalled previously studied items while a voice key and com-
puter recorded each item’s recall latency relative to the onset of the recall period. The measures of
recall probability and mean recall latency were shown to be empirically independent, demonstrat-
ing that there exists no a priori relationship between the two. In all four experiments, latency dis-
tributions were fit well by the ex-Gaussian, suggesting that retrieval includes a brief normally dis-
tributed initiation stage followed by a longer exponentially distributed search stage. Further, the
variation in mean latency stemmed from the variation in the duration of the search stage, not the ini-
tiation stage. Interresponse times (IRTs), the time elapsed between two successive item recalls, were
analyzed as well. The growth of mean IRTs, plotted as a function of output position, was shown to
be a simple function of the number of items not yet recalled. Finally, the mathematical nature of both
free recall latency and IRT growth are shown to be consistent with a simple theoretical account of
retrieval that depicts mean recall latency as a measure of the breadth of search.

Perhaps the most striking feature of episodic free re-
call is the distinctively long pause that sometimes pre-
cedes a response. Even a study list with only a few items
often results in response latencies greater than 10 sec.
These lengthy response times are unique to free recall,
as cued recall and recognition typically yield response
times of 1 or 2 sec. Yet although analyses of cued recall
latency (e.g., MacLeod & Nelson, 1984) or recognition
latency (e.g., Hockley, 1982) are quite common, few in-
vestigators have measured free recall latency, the time
elapsed from the onset of the recall period to the recall
of an item, or interresponse times (IRTs), the time be-
tween consecutive retrievals.

The limited attention given to either temporal measure
may stem from the belief that recall probability and re-
call latency are a priori inversely related and therefore re-
dundant measures. That is, an experimental manipulation
that weakens the memory trace and thereby reduces re-
call probability should necessarily increase recall latency
as well. If this were the case, researchers could simply ig-
nore free recall latency without overlooking any impor-
tant information. Although such negative correlations
can occur, there is no prior evidence that they either must
(or even usually) occur. Indeed, three experiments in the
present investigation yielded correlations between recall
probability and latency that were negative, nonexistent,

and positive, thus illustrating that the measure of free re-
call latency provides unique information.

While the measure of recall latency is important in its
own right, the empirical form of recall latencies also
suggests a parsimonious theoretical account of retrieval.
Discussed in more detail in the General Discussion, this
interpretation simply construes mean recall latency as a
measure of the breadth of search. That is, an increase in
the search set (which includes the internal representa-
tions of target items and possibly extralist items) results
in slower retrieval, on the average, of a particular item
within the search set. This assumption is consistent with
the results of a recent study of proactive interference by
Wixted and Rohrer (1993). In that experiment, subjects
underwent three successive Brown-Peterson trials with
different study lists drawn from the same category fol-
lowed by a single list of items belonging to a new cate-
gory. As expected, recall probability declined across the
first three trials and rebounded on the fourth. More no-
tably, with each new list of words belonging to the orig-
inal category—that is, with the accumulation of previ-
ously studied words categorically related to those to be
retrieved—latencies slowed. Likewise, after study of the
last list of items, which were categorically unrelated to
all previous items, latencies quickened significantly.
Thus, with the reasonable and widely held assumption
that search sets include items from the most recent list
as well as categorically related items from prior lists,
these effects of proactive interference on latency are to
be expected (cf. Gorfein & Jacobson, 1973).

The four experiments in the present investigation
were rather straightforward: a single-subject analysis, a
manipulation of list length, a manipulation of study du-
ration, and a manipulation of both list length and study
duration. The analyses were threefold. First, the rela-
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tionship between probability of recall and latency to re-
call was examined, as described above. Second, latency
distributions were tabulated and compared to a theoret-
ical distribution that provides an interesting account of
retrieval. Third, the growth of IRTs as a function of out-
put position was examined. Each of these analyses tells
the same story. Before presentation of the experiments,
latency distributions and IRT growth will first be dis-
cussed in more detail.

Latency Distributions
There are a few methodological differences between

the present analysis of latency distributions and those
carried out by previous investigators (cf. Bousfield,
Sedgewick, & Cohen, 1954; Gronlund & Shiffrin, 1986;
Roediger, Stellon, & Tulving, 1977; Roediger & Thorpe,
1978; Roediger & Tulving, 1979). (The results of these
latency studies and previous IRT studies, for both
episodic and semantic memory, are reviewed in Wixted
& Rohrer, 1994.) First, these researchers, who relied on
written recall, grouped latencies into relatively large
bins, generally 1 or 2 min in width. In the present study,
the use of a computer and a voice key magnified the
temporal resolution and permitted the analysis of the
critical early moments of recall. Second, whereas previ-
ous researchers have tabulated cumulative latency dis-
tributions, the total number of items recalled prior to
each point in time, we present noncumulative latency
distributions, as illustrated in Figure 1. (This figure in-
cludes data from Experiment 1 and is used here for il-
lustrative purposes.) Although the cumulative curve is
striking, its smoothness results from the dependence of
each data point upon the previous data point. The non-
cumulative distribution, though noisier, is more telling,
especially in its depiction of the pause that precedes free
recall. However, both the cumulative and the noncumu-
lative distributions, when fit by mathematical functions,
divulge the same information about the rate of retrieval.

As illustrated in Figure 1, and reported by Roediger
et al. (1977), cumulative latency distributions are de-
scribed well by the cumulative exponential,

where R(t) equals the cumulative number of items re-
called by time t, N represents the number of items re-
called after infinite time (i.e., asymptotic recall) and �
represents the mean latency of the recalled items. In fact,
the cumulative exponential in Figure 1 accounts for
99.8% of the variance. Notice, however, that this curve
is right shifted to account for the pause that precedes re-
call, thereby indicating that the free recall process in-
cludes a brief initiation stage followed by a single, on-
going search process that yields exponential cumulative
recall. Thus, we would expect noncumulative latency
distributions to be described well by the theoretical dis-
tribution that describes just such a process: the ex-
Gaussian (cf. Burbeck & Luce, 1982; Dawson, 1988;

   
R( t ) = N 1 − e−t / �( ),

Heathcote, Popiel, & Mewhort, 1991; Hockley, 1982,
1984; Hohle, 1965; Luce, 1986; Ratcliff, 1978, 1979;
Ratcliff & Murdock, 1976). Indeed, as illustrated in Fig-
ure 1 and reported by Wixted and Rohrer (1993), free re-
call latencies are described well by the ex-Gaussian
distribution,

as derived in Appendix A. Although the ex-Gaussian is
rather unsightly, it is conceptually quite elegant. Specif-
ically, ex-Gaussian latencies result when a response
process consists of two serial, independent stages, a nor-
mally (or Gaussian) distributed stage and an exponen-
tially distributed stage. The duration of the normal stage
has mean � (mu) and standard deviation � (sigma), and
the duration of the exponential stage is solely described
by � (tau), which equals both the mean and the standard
deviation. Most importantly, the sum of � and � neces-
sarily equals mean latency. With regard to free recall, the
normal stage of the ex-Gaussian presumably represents
a brief initiation that precedes the retrieval of the first
item and the exponential stage represents an ongoing
search that yields target items at a rate that declines ex-
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Figure 1. Recall latency cumulative distribution with best-fitting cu-
mulative exponential distribution,  and recall latency (noncumulative)
distribution with best-fitting ex-Gaussian distribution (Experiment1). 
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ponentially (or, as described above, accumulates expo-
nentially, as derived in Appendix B).

The initiation that precedes free recall lasts about a
second and includes the perception of the recall prompt
and perhaps the delimiting of the search set. Admittedly,
this initiation stage might be described equally well by
other unimodal distributions such as the lognormal,
gamma, generalized gamma, or Maxwell. One disad-
vantage of the normal distribution is its domain of both
negative and positive values, thereby theoretically al-
lowing for both negative and positive reaction times.
However, this drawback is of no practical concern if the
normally distributed stage of the ex-Gaussian lies al-
most entirely to the right of the origin—that is, when �
is greater than 2�.

There are, of course, theoretical advantages to the
normal distribution. For instance, if two or more serial
stages of a response process each have durations that are
normally distributed, the sum of those durations is itself
normally distributed. Moreover, if a response process in-
cludes roughly 10 or more consecutive serial stages, dis-
tributed normally or otherwise, the total response time
approaches normality, given that no one stage con-
tributes disproportionately to the variance of the sum
(Hohle, 1965). Thus, the normal distribution seems ap-
propriate for the initiation stage, for this stage may itself
comprise multiple substages. But the theoretical prop-
erties of the normal are not critical in this analysis. Es-
sentially, this brief stage is needed to account for the
short but distinct pause that precedes the recall of items.

Less arbitrarily, the search stage of free recall seems
uniquely well described by the exponential. Evidence
that this search process is exponential derives from two
sources. First, the exponential growth of cumulative re-
call (discounting the initiation) described above neces-
sitates that the rate of recall declines exponentially (see
Appendix B). Second, the tails of recall latency distri-
butions decline exponentially (Wixted & Rohrer, 1993),
indicating that the response process includes an expo-
nential stage whose duration constitutes a large propor-
tion of the total response time (Ashby, 1982).

Exponentially declining rates of recall (i.e., latency
distributions with exponential tails) are characteristic of
the pure-death process (McGill, 1963). According to
this simple model of retrieval, each item within a set has
the same probability of retrieval (or “death”), and this
probability holds constant throughout the retrieval pe-
riod. Once an item has been retrieved, subsequent re-
trievals of that same item are ignored, and the rate of re-
call consequently declines. Search continues until all
items have been retrieved. Note that the probability of
retrieval is unaffected by either prior events or the pas-
sage of time, and, for this reason, the exponential is often
characterized as “memoryless.”

The most widely known instantiation of the pure-
death process is that of random sampling (with replace-
ment) (see Albert, 1968; Herrmann & Pearle, 1981;

Indow & Togano, 1970; McGill, 1963; Murdock &
Okada, 1970; Schulz & Albert, 1976; Shiffrin, 1970;
Vorberg & Ulrich, 1987). According to this serial inter-
pretation, which is derived in Appendix B, items are ran-
domly sampled one at a time, at a constant rate, from a
search set. This search set includes target items and, pos-
sibly, extralist items. Since it is generally believed that
the representation of a list item (i.e., a memory trace)
can vary in strength to the extent that retrieval may or
may not be possible, we will assume further that the
search set includes both recoverable and nonrecoverable
target items. After sampling, each item is immediately
recognized as either a yet-to-be-retrieved recoverable
target (and then recalled) or a previously retrieved tar-
get, nonrecoverable target, or extralist item (and then ig-
nored). As the number of yet-to-be-retrieved recoverable
targets decreases, the rate of recall correspondingly de-
clines. As discussed in more detail in the General Dis-
cussion, both this account and a corresponding parallel
interpretation dictate that mean latency is directly pro-
portional to the number of items within the search set.
Thus, the use of latency as a measure of search set
breadth is suggested both by intuition and by the expo-
nential nature of search.

Independent of its theoretical implications, an ex-
Gaussian latency distribution results from a response
process that includes two distinct stages. This observa-
tion is important, because experimental manipulations
may differentially affect the duration of these two stages.
Such dissociations of the ex-Gaussian parameters � and
� have been found in simple reaction tasks (Hohle,
1965), recognition memory (Hockley, 1982; Ratcliff &
Murdock, 1976), visual search and working memory
(Hockley, 1984), and the Stroop effect (Heathcote et al.,
1991). Dissociations of � and � are reported in the pres-
ent study as well.

IRT Growth
IRTs may provide the most accurate portrayal of the

time course of free recall once the search process is un-
derway. In the present study, we examine the growth of
mean IRTs as a function of output position, as was done
in each of the previous episodic IRT studies (Murdock
& Okada, 1970; Patterson, Meltzer, & Mandler, 1971;
Pollio, Kasschau, & DeNise, 1968; Pollio, Richards, &
Lucas, 1969). Each of these studies employed an imme-
diate recall procedure, thereby ensuring the contribution
of short-term storage as well as long-term storage
(Raaijmakers & Shiffrin, 1980). It therefore remains un-
clear whether the results of these IRT studies would dif-
fer with the use of a filled retention interval. More de-
finitively, subjects in the Murdock and Okada study
recalled 7 or fewer items from a 20-item study list in
three fourths of the trials, suggesting that the long-term
store contributed only a small proportion of the re-
sponses. Metcalfe and Murdock (1981) reach the same
conclusion after analyzing these data further. It is of note
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that the study by Murdock and Okada is the only previ-
ous one in which the mathematical form of IRT growth
has been examined.

Intriguingly, though the pure-death process account of
retrieval yields both exponentially increasing cumula-
tive recall and an exponentially decreasing rate of recall,
it does not yield exponential IRT growth. In fact, the
pure-death process actually dictates hyperbolic IRT
growth. According to this equation, hereafter referred to
as the pure-death hyperbola, the

�
Mean ith IRT �

N�i
for i � 1, 2, . . . , N � 1

where �, the only parameter, again represents mean la-
tency, N equals the recall total for that trial, and i equals
the ordinal position of the IRT so that the 1st IRT oc-
curs between the recall of the first and second items. (If
there were no initiation stage preceding the search
stage, the substitution of 0 for i in this equation would
give the duration of the so-called null IRT, the latency
of the first item.) This equation is derived in Appen-
dix C.

This equation reflects an important characteristic of
IRT growth in a pure-death process. Namely, for a given
search-set size (i.e., a given value of �), an IRT is
uniquely determined by the number of items not yet re-
called (N�i) . Thus, the last IRT of a four-item recall
should equal the last IRT of a nine-item recall from the
same sized search set. In particular, the last IRT equals
�/1, the second to last IRT equals �/2, etc., regardless of
recall total (N ) . Therefore, the growth of mean IRTs
given by a pure-death process can be collapsed across
recall total by “reverse output position” (last IRT, second-
to-last IRT, etc.). In this way, a single estimate of � can
be obtained for each experimental condition.

Finally, we should point out that the analyses of IRT
growth and latency distributions are complementary
rather than redundant. For example, the pause preced-
ing the recall of the first item is reflected in the latency
distribution but excluded by an analysis of IRT growth.
By the same token, but more importantly, estimates of
� via IRTs serve to confirm estimates of � via latencies,
since the parameter estimates given by the ex-Gaussian
can be misleading. In particular, it is possible that the
ex-Gaussian nature of a particular latency distribution
is only an artifact of summing latencies across trials in
which recall totals vary. In fact, even a constant rate of
recall can theoretically yield ex-Gaussian distributions
after summing across trials. Fortunately, the estimates
of � via IRTs can rule out such possibilities.

GENERAL STATISTICAL TECHNIQUE

Before all data analyses, response latencies resulting
from voice key false alarms  (i.e., activation of voice key
by extraneous noises) were removed. For each voice key
miss, the entire trial including the miss was excluded
from the data analysis in order to avoid significant dis-

tortion of mean IRTs. Fortunately, voice key misses were
rare (less than one per hundred hits), since voice key
sensitivity was set relatively high. That is, the number of
voice key misses was minimized at the expense of more
voice key false alarms, because the latter can be re-
moved without distorting the data.

False alarms by subjects were also rare, occurring at
a rate of less than 2% in each experiment. Since the re-
moval of false alarms distorts the adjacent IRTs, we
decided a priori to include any false alarms in our analy-
ses, because temporal measures were our primary con-
cern. However, the removal of so few would not affect
our basic findings.

The mean recall latencies given in Experiments 2, 3,
and 4 are means of subjects’ means. (Experiment 1 is a
single-subject analysis.) In contrast, the latency distri-
butions and the mean IRTs reported in this paper were
derived by summing across all responses. Thus, the
mean recall latencies differ slightly from the sum of �
and �, because the number of items recalled by each sub-
ject varied.

Observed latency distributions were fit by the ex-
Gaussian distribution according to a maximum likeli-
hood estimation procedure (cf. Maindonald, 1984;
Ratcliff & Murdock, 1976). A chi-square goodness-of-
fit statistic was calculated for each best-fitting ex-
Gaussian. As is done typically, bins with few responses
were combined (and degrees of freedom reduced) to
yield expected values of at least five for each bin (cf.
Hoel, 1971; Ratcliff & Murdock, 1976). Further, in
order to ensure that the normal stage of the ex-Gaussian
lay primarily to the right of the origin (see the introduc-
tion), it was confirmed that � was greater than 2� in
each fit. Finally, t tests of significant difference were
performed on pairs of parameter estimates by obtaining
asymptotic standard errors (ASEs) from the Hessian ma-
trix of second partial derivatives (cf. Maindonald, 1984;
Ratcliff & Murdock, 1976).

The IRTs reported for the following experiments mea-
sured the duration between the voice onsets of consecu-
tively recalled items rather than the duration of the
“downtime” between an item’s voice offset and the next
item’s voice onset. Though both methods have been used
before, we prefer, as do Patterson et al. (1971), not to ig-
nore the vocalization time. Not only might the vocaliza-
tion of an item overlap with the internal search for the
next item, the exclusion of vocalization time would the-
oretically disallow the comparison of results given by
IRTs and latencies, since the latter necessarily include
the vocal durations of items recalled earlier in the trial.
In any case, our exclusive use of four-letter monosyl-
labic study words minimized any possible effects of in-
cluding vocalization time.

The best-fitting pure-death hyperbolas for each plot of
IRT growth were determined by least squares. The growth
of mean IRTs as a function of serial position was plotted
in two ways: either by partitioning the data by the total
number of items recalled on each trial (Figures 3 and 6)
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or by collapsing across reverse output position (Figures 4
and 7), as described in the introduction. The plots of IRT
growth partitioned by recall total exclude recall totals that
occurred less than five times as well as recall totals of two,
because a single IRT cannot convey IRT growth. How-
ever, the plots of IRT growth collapsed across reverse out-
put position include all IRTs. Likewise, all IRTs were in-
cluded when fitting the pure-death hyperbola.

EXPERIMENT 1

To ensure that the ex-Gaussian nature of latency dis-
tributions is not an artifact of pooling data across sub-
jects, we performed a preliminary experiment that in-
volved eight single-subject analyses.

Method
Subjects. Eight undergraduates of the University of California,

San Diego participated for course credit.
Materials. Study-list items were randomly chosen from a pool

of four-letter monosyllabic nouns, and their selection was ran-
domized uniquely for each subject.

Design. Each study list contained five words, which were pre-
sented once every 2 sec. After three practice trials, each subject
completed two 25-trial sessions.

Equipment. A Lafayette Instruments Voice Activated Relay
(Model 18010), in conjunction with an IBM-compatible personal
computer, recorded the onset of each spoken word to the nearest
millisecond.

Procedure. Subjects were tested in the presence of an experi-
menter, and the trials were computer driven. In the study period, be-
ginning after a 3-sec prompt, a new word appeared every 2 sec (and
remained throughout the study period), and subjects read the
words aloud as they appeared. In the distractor task, 10 three-digit
numbers appeared for 2 sec each, and the subjects read the three
digits aloud in ascending order of value. In the 20-sec recall period,
the subjects recalled the study words aloud and an experimenter
monitored the recall latencies via computer in order to subject false
alarms as well as voice key false alarms (e.g., the recording of a
cough) and voice key misses (e.g., the failure to record a soft-spo-
ken response). After a 10-sec rest period, the next trial began.

Results and Discussion
Table 1 includes mean recall probability, mean recall

latency, and the best-fitting ex-Gaussian latency distri-
bution for each of the 8 subjects. For all but Subject 3,
the best-fitting ex-Gaussian produced nonsignificant
chi-square goodness-of-fit statistics, indicating an ac-

ceptable fit. The anomalous data of Subject 3 were most
probably due to a ceiling effect; she recalled all five
items in 82% of the trials whereas the other 7 subjects,
on the average, recalled all five items in only 20% of the
trials. The correlation between recall probability and re-
call latency was �.39 with Subject 3 included and �.09
with Subject 3 excluded, both of which were nonsignif-
icant. The recall latencies, collapsed across all subjects
except Subject 3, are those used in Figure 1 to illustrate
cumulative and noncumulative latency distributions.

EXPERIMENT 2

In this experiment, study-list length was manipulated.
Although a longer study list does lead to longer recog-
nition latencies (see, e.g., Atkinson & Juola, 1974), its
effect on recall latency is unknown. However, an exam-
ination of list-length effects on cumulative recall by
Roediger and Tulving (1979) suggests that free recall
mean latency is affected in the same manner as recogni-
tion latency is. Although Roediger and Tulving did not
focus on either latency or the mathematical form of cu-
mulative recall, they noted that subjects recalling short
lists “reached asymptotic level of recall at a greater rate”
(p. 611). Because faster approaches to the asymptote
generally translate into faster mean latencies, it is prob-
able that the longer list lengths resulted in reduced mean
latencies in that experiment.

Such a finding can easily be explained by a search-set
analysis. Given that longer study lists result in search
sets that contain more targets (and perhaps more extra-
list items), mean recall latency should increase. More
precisely, estimates of the initiation time (�) should re-
main constant, while estimates of the search time (�),
given by either latency distributions or IRT growth,
should increase.

Incidentally, although shorter study lists yield the re-
call of fewer list items (but a greater proportion of list
items) than longer lists do, it is not the case that any ma-
nipulation that reduces recall total will necessarily
shorten mean latencies. For instance, the buildup of
proactive interference, as described in the introduction,
results in fewer recalled items (and reduced recall prob-
ability) but longer mean latencies. Moreover, if the re-
call trials within any particular condition are grouped by
the number of items recalled (N ) , mean latency is inde-
pendent of N.

Method
Subjects. Twelve undergraduates of the University of Califor-

nia, San Diego participated for course credit.
Materials. Study-list items were randomly chosen from a pool

of four-letter monosyllabic nouns, and their selection was ran-
domized uniquely for each subject.

Design. Each study list contained three, six, or nine words,
which were presented once every 2 sec. After three practice trials,
24 scored trials (8 of each length) appeared in an order random-
ized uniquely for each subject.

Equipment. A Lafayette Instruments Voice Activated Relay
(Model 18010), in conjunction with an IBM-compatible personal

Table 1
Mean Recall Probability, Mean Recall Latency (in Seconds),

and Latency Distributions in Experiment 1
Ex-Gaussian Fits of

Latency Distributions

Subject Probability Latency �2 (df ) p

1 .67 4.07 3.98 (6) .68
2 .62 5.05 11.42 (7) .12
3 .94 3.45 27.21 (6) 	.01
4 .60 4.90 3.82 (6) .70
5 .62 6.09 6.13 (9) .73
6 .62 3.94 4.98 (6) .55
7 .88 5.19 5.02 (8) .76
8 .68 4.54 3.66 (6) .72
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computer, recorded the onset of each spoken word to the nearest
millisecond.

Procedure. Subjects were tested in the presence of an experi-
menter, and the trials were computer driven. In the study period,
beginning after a 3-sec prompt, a new word appeared every 2 sec
(and remained throughout the study period), and subjects read the
words aloud as they appeared. In the distractor task, 10 three-digit
numbers appeared for 2 sec each, and the subjects read the three
digits aloud in ascending order of value. In the 30-sec recall pe-
riod, the subjects recalled the study words aloud and an experi-
menter monitored the recall latencies via computer in order to
record subject false alarms as well as voice key false alarms (e.g.,
the recording of a cough) and voice key misses (e.g., the failure to
record a soft-spoken response). After a 10-sec rest period, the next
trial began.

Results and Discussion
As can be seen in Table 2, longer study lists resulted

in decreased recall probability and increased recall la-
tency, as expected. Analyses of variance indicated a sig-
nificant decrease in recall probability [F(2,22) � 46.17,
MSe � .01] and a significant increase in recall latency
[F(2,22) � 67.47, MSe � .64], as list length increased.
(Throughout this paper, any test described as significant
produced p values less than .01, and any test described
as insignificant produced p 
 .1.)

As can be seen in Figure 2 and Table 3, the latency
distributions were well described by the ex-Gaussian.
Estimates of �, each about 1 sec, varied nonmonoton-
ically across increasing list lengths, as is seen in the
similarity in the ascending arms of each distributions.
Estimates of �, on the other hand, grew from about
3 sec to 7 sec, as is illustrated by the differential de-
clines in the tails of each distribution. Each of the three
pairwise comparisons of � were insignificant (p > .1),
whereas the three pairwise comparisons of � were
significant.

As can be seen in Figure 3, the growth of mean IRTs,
partitioned by recall totals, is described well by the one-

parameter pure-death hyperbola. Likewise, Figure 4
nicely depicts the pure-death hyperbolic growth of mean
IRTs that are collapsed across recall total and plotted as
a function of reverse output position (e.g., N�1 denotes
the last IRT). These fits did, however, underestimate the
“least recent” IRTs in each condition, due, in part, to the
rarity of the longer recall totals that provided these “least
recent IRTs.” For example, in the nine-study-words con-
dition, eight or more words were recalled only five
times, with four of those occurrences given by a single
subject. Thus, the second data point in the nine-study-
words IRT growth plot (i.e., the N�7 interval) is the av-
erage of only five IRTs. Nevertheless, the fits in Figure 4
accounted for a large portion of the variance, as reported
in Table 3. Further, these fits yielded estimates of � that
increased with study list length, yielding three signif-
icant pairwise comparisons. Finally, these three esti-
mates of � via IRTs were not significantly different
from the corresponding estimates of � via latencies in
each condition.

The random sampling interpretation of the pure-death
process offers one explanation of the effects of study-list
length on mean latency. First, longer lists result in a
greater number of target items (and possibly extralist
items) within the search set, which in turn increases
mean latency. Second, longer study lists result in an in-

Table 2
Mean Recall Probability (With Standard Errors) and Mean

Recall Latency (in Seconds, With Standard Errors)
in Experiment 2

List Probability Latency

Length M SE M SE

3 words .85 .02 3.22 .23
6 words .66 .03 5.77 .28
9 words .52 .04 6.90 .40

Figure 2. Recall latency distributions, grouped into 1-sec bins, with
best-fitting ex-Gaussians for varying study list lengths (Experiment2).

Table 3
Fits of Latency Distributions (Figure 2) and Interresponse

Time Growth (Figure 4) in Experiment 2
Ex-Gaussian Fits of Pure-Death Fits

List Latency Distributions of IRT Growth

Length �2 (df ) � SE � SE VAF � SE

3 words 9.16 (5) 0.90 .12 2.25 .18 .77 2.53 .19
6 words 16.74 (12) 1.16 .11 4.66 .28 .90 4.56 .22
9 words 24.89 (13) 1.07 .13 6.19 .36 .91 5.97 .26

Note—Parameter estimates are given in seconds and are accompanied
by their asymptotic standard errors. Each �2 statistic was nonsignifi-
cant (p 
 .1).
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crease in the number of recoverable targets within the
search set, as reflected in the greater absolute number of
items recalled. However, the increase in the number of
recoverable target items is less than the increase in the
number of study-list items. Thus, the proportion of list
items that are recoverable (i.e., recall probability) de-
clines with longer list lengths.

EXPERIMENT 3

In this experiment, item study duration was manipu-
lated. While longer exposure to each list item would cer-
tainly increase recall probability, its effect on recall
latencies was again unknown. Once again, though, a pre-

vious finding suggested a possible outcome. Bousfield
et al. (1954) presented study lists to subjects one, two,
three, four, or five times and then plotted cumulative re-
call across five 2-min intervals. We visually estimated
these data points, and, by incorporating the curve fits
presented by Bousfield et al., we were able to derive es-
timates of mean latency for each condition. The increase
in the number of list presentations resulted in a slight in-
crease in mean latency. This result seems to us rather
striking, because intuition might suggest that items that
are learned better are recalled more quickly. Given that
a greater number of list presentations results in greater
study time for each item, we might expect (on the basis
of the data from Bousfield et al.) that the manipulation
of item study duration would not decrease mean latency.

Method
In Experiment 3, six-word study lists were presented to subjects

at rates of 1, 2, or 4 sec per word. Each subject received seven tri-
als per condition. Otherwise, Experiment 3 was identical to Ex-
periment 2.

Results and Discussion
As can be seen in Table 4, the increase in study item

exposure resulted in higher recall probability, as ex-
pected, but had no effect on mean recall latency. Like-
wise, analyses of variance indicated a significant in-
crease in recall probability [F(2,22) � 42.73, MSe �
.01] and insignificant differences in recall latency
[F(2,22) 	 1].

As can be seen in Figure 5 and Table 5, the ex-
Gaussian described the latency distributions well. The
differences between each of the three pairs of � values
were not significant, as is illustrated by the similarity
among the three distributions. Unexpectedly, estimates
of � increased from .86 to 1.36 sec with greater expo-
sure, though the difference between these two extreme
values was not significant. Notably, this increase in �
was seen in another experiment in our laboratory in
which study lists were presented one, two, or four times
at a constant rate. Thus, it seems that longer exposures
by way of either slower presentation rates or multiple list
presentations produce a longer initiation stage. How-
ever, the effects are small, and the result should be con-
sidered tentative.

Figure 6 shows the pure-death hyperbolic growth in
the mean IRTs and clearly illustrates the dependence of
IRTs on the number of yet-to-be-recalled items. The last
IRTs of each recall total are between 4 and 5 sec, the sec-
ond to last IRTs of each recall total are between 2 and

Figure 3. The growth of mean interresponse times (IRTs), parti-
tioned by recall total, with best-fitting pure-death hyperbola for vary-
ing list lengths (Experiment 2).

Table 4
Mean Recall Probability (With Standard Errors) and

Mean Recall Latency (in Seconds, With Standard Errors)
in Experiment 3

Study Probability Latency

Exposure M SE M SE

1 sec each .50 .03 6.07 .41
2 sec each .60 .03 5.96 .40
4 sec each .76 .03 6.30 .43

Figure 4. The growth of mean interresponse times (IRTs), collapsed
across recall total, with best-fitting pure-death hyperbola for varying
list lengths (Experiment 2). The mean IRTs are plotted as a function
of reverse output position, where N�1 denotes the last IRT.
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3 sec, and the third to last IRTs are less than 2 sec, re-
gardless of recall total. Such parity is expected in a pure-
death process.

Consequently, the plots of mean IRTs in Figure 7 that
are collapsed across recall total by reverse output posi-
tion are fit well by the pure-death hyperbola, accounting
for more than 95% of the variance, as reported in Ta-
ble 5. The similarity between these three plots provides
further evidence that mean latency is unaffected by the
duration of study item exposure. As expected, the esti-
mates of � given by these three fits, as reported in
Table 5, yielded three nonsignificant pairwise compar-
isons. Finally, as in the last experiment, these estimates

of � were not significantly different from the correspond-
ing estimates of � via latencies in each condition (also
reported in Table 5).

The random sampling interpretation of the pure-death
process again provides a mechanism by which to under-
stand the effect of varying study durations upon recall
probability and latency. The increase in study duration
resulted in a greater number of recoverable target items
within the search set, thereby increasing recall proba-
bility. However, the total number of recoverable and non-
recoverable targets (and extralist items, if any) remains
constant with longer study duration, thereby not affect-
ing mean latency. Thus, longer study times do not result
in a greater number of targets within the search set; it in-
stead increases the likelihood that a target item within
the search set will be recoverable. This is not the only
possible interpretation of this result, but it is the one
most easily reconciled with the results of Experiments 1
and 2 and the recall latency analyses of proactive inter-
ference described earlier.

EXPERIMENT 4

Thus far, we have obtained both a positive correlation
and a noncorrelation between recall probability and re-
call latency. Taken together, these two findings represent

Figure 5. Recall latency distributions, grouped into 1-sec bins, with
best-fitting ex-Gaussians for varying study item exposure (Experi-
ment 3).

Table 5
Fits of Latency Distributions (Figure 5) and Interresponse

Time Growth (Figure 7) in Experiment 3
Ex-Gaussian Fits of Pure-Death Fits

Study Latency Distributions of IRT Growth

Exposure �2 (df ) � SE � SE VAF � SE

1 sec each 17.10 (12) 0.86 .20 5.30 .39 .96 5.39 .23
2 sec each 12.33 (13) 1.15 .13 4.89 .33 .98 5.21 .13
4 sec each 12.65 (14) 1.36 .14 5.03 .31 .97 4.96 .15

Note—Parameter estimates are given in seconds and are accompanied
by their asymptotic standard errors. Each �2 statistic was nonsignifi-
cant ( p 
 .1).

Figure 6. The growth of mean interresponse times (IRTs), parti-
tioned by recall total, with best-fitting pure-death hyperbola for vary-
ing study item exposure (Experiment 3).
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a dissociation of the two dependent measures; however,
an inherent relationship can be completely ruled out. As
MacLeod and Nelson (1984) argue in their dissociation
of probability and latency in cued recall, two measures
that are a priori associated may sometimes appear non-
correlated if a manipulation does not vary across a wide
enough range of values. If, for example, presentation
rate in the last experiment varied by a factor of 10 rather
than 4, latency might then have been affected.

The results of the first two experiments suggest an ex-
perimental manipulation that addresses the issue in a
more definitive way. Namely, if study lists were both
lengthened and presented more slowly, then mean la-
tency should increase (due to the longer lists) and recall
probability should also increase (due to the greater
study time). In fact, since the results of the first two ex-
periments dictate this finding, it might have been pre-
sented as just a thought experiment. But in the interest
of empiricism, we present this extension (as well as
replication) of Experiments 2 and 3 and a brief analysis.

Method
In Experiment 4, subjects were presented with either six-word

lists at 1 sec per word or nine-word lists at 4 sec per word. Because
Experiment 3 included just two conditions, one third fewer sub-
jects were tested than in Experiments 2 and 3. Otherwise, the
method was identical to that described for Experiment 2.

Results and Discussion
The shift from the six quickly presented items to the

nine slowly presented items produced a highly signifi-
cant increase in both recall probability [F(1,7) � 12.50,
MSe � .01] and mean recall latency [F(1,7) � 30.86,
MSe � .82], as is shown in Table 6.

The ex-Gaussian fits to both latency distributions
yielded nonsignificant chi-square statistics, as is re-
ported in Table 7. The two estimates of � were not sig-
nificantly different (though there was once again a per-
ceptible increase with longer study exposure) and the
two estimates of � were significantly different.

Pure-death hyperbolic fits of mean IRT collapsed
across recall total and plotted with respect to reverse out-

put position were noisier than those in Experiments 2
and 3, yet nevertheless accounted for most of the vari-
ance, as reported in Table 7. These fits yielded two esti-
mates of � that were not quite significantly different,
though both estimates of � via IRTs were not signifi-
cantly different from the corresponding estimates of �
via latencies.

In sum, the manipulation of both list length and pre-
sentation rate resulted in a positive correlation between
recall probability and latency, and the effect on mean la-
tency stems primarily from the variability in the duration
of retrieval (�), not initiation (�). As interpreted by a
search-set analysis, a longer, slowly presented list results
in a search set that includes both more items (and there-
fore longer mean latencies) and a greater number of re-
coverable targets (and therefore better recall probability).

GENERAL DISCUSSION

We have reported a single-subject analysis of recall la-
tency and three experiments that demonstrate a negative,
nonexistent, and positive correlation between mean re-
call probability and mean recall latency. In Experi-
ment 2, an increase in list length decreased recall prob-
ability and increased recall latency. In Experiment 3, an
increase in study item exposure increased recall proba-
bility but did not affect recall latency. In Experiment 4,
an increase in both list length and study item exposure
increased both recall probability and recall latency.

In addition, the ex-Gaussian nature of latency distri-
butions, whether given by single subjects (Experi-
ment 1) or summed across subjects (Experiments 2, 3,
and 4), and the independent manipulation of its param-
eters � and � suggest that the retrieval process consists
of a brief, normally distributed initiation stage followed

Figure 7. The growth of mean interresponse times (IRTs), collapsed
across recall total, with best-fitting pure-death hyperbola for varying
study item exposure (Experiment 3). The mean IRTs are plotted as a
function of reverse output position, where N�1 denotes the last IRT.

Table 7
Fits of Latency Distributions and Interresponse Time

Growth in Experiment 4
Ex-Gaussian Fits of Pure-Death Fits

Study Latency Distributions of IRT Growth

Condition �2 (df ) � SE � SE VAF � SE

6 words
at 1 sec each 16.17 (10) 0.72 .14 4.33 .30 .55 4.62 .39

9 words
at 4 sec each 22.81 (19) 0.95 .16 6.74 .38 .93 5.93 .23

Note—Parameter estimates are given in seconds and are accompanied
by their asymptotic standard errors. Each �2 statistic was nonsignifi-
cant ( p 
 .1).

Table 6
Mean Recall Probability (With Standard Errors) and

Mean Recall Latency (in Seconds, With Standard Errors)
in Experiment 4

Study Probability Latency

Condition M SE M SE

6 words
at 1 sec each .40 .04 4.87 .74

9 words
at 4 sec each .56 .04 7.38 .85
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by an exponentially distributed search stage. Further,
pure-death hyperbolic fits of the IRT growth provided
estimates of � that were comparable to those given by the
ex-Gaussian fits of latency distributions. Finally, both
ex-Gaussian latency distributions and pure-death hyper-
bolic IRT growth are consistent with a pure-death
process model of retrieval, which is now discussed in
more detail.

Theoretical Interpretations
The interpretation of latency as a measure of the

breadth of search is not only intuitive, it is necessitated
by the simplest theoretical account of exponentially de-
clining retrieval, the random-sampling-with-replace-
ment scheme. The serial interpretation of this account is
well known (see Albert, 1968; Indow & Togano, 1970;
McGill, 1963; Murdock & Okada, 1970; Schulz & Al-
bert, 1976; Shiffrin, 1970; Vorberg & Ulrich, 1987), but
a closely related parallel version exists as well.

The serial interpretation was presented earlier.
Briefly, items within the search set are randomly se-
lected, one at a time, at a constant rate. Selected items
are immediately recognized as either a not-yet-recalled
target item (and then recalled) or a previously recalled
target, nonrecoverable target, or extralist item (and then
ignored). As the number of not-yet-recalled target items
decreases, the rate of retrieval consequently declines.

Interpreted in parallel, all items within the search set
have an equal momentary probability of retrieval that re-
mains constant until an item is retrieved, after which the
momentary probability of retrieval equals zero. In addi-
tion, a finite amount of resources is distributed equally
among each item within the search set, and the retrieval
probability for each item is a direct function of the
amount of resources allocated for that item. Therefore,
if the number of items within the search set is, say, dou-
bled, the allocation of resources for each item, which di-
rectly affects retrieval probability, is consequently cut in
half. Unfortunately, the serial and parallel interpreta-
tions of the pure-death process, as described above, can-
not be teased apart experimentally (cf. Townsend, 1971;
Vorberg & Ulrich, 1987).

Most importantly, the random sampling model offers
insight into the size of the search set. Very simply, as de-
rived in Appendix B, the parameter estimate � � St*,
where S equals the number of items within the search set
and t* represents the shortest possible retrieval time—
that is, the time to retrieve an item when the search set
contains only that one item. Thus, in the serial version,
t* equals the duration of a single sampling, and in the
parallel version, t* equals the expected time to retrieve
an item when all resources are focused on the retrieval
of that single item.

Of course it is not possible to accurately measure sam-
pling time (t*), but given that it remains roughly con-
stant, one can make relative comparisons of search-set
size (S) between conditions based on values of �. For in-
stance, if an experimental manipulation results in the

doubling of �, the model would suggest that the number
of items within the mental search set doubled as well.
Thus, this search-set sampling account implies what in-
tuition suggests: mean latency reflects the size of the
search set. Although the exponential form of retrieval
was observed long ago, the fact that � provides a theo-
retical estimate of search-set size has never been 
exploited.

The pure-death process, as described above, is the
most straightforward version; further assumptions can
be added. For example, Vorberg and Ulrich (1987) have
presented a generalization of the pure-death process in
which the time to sample and identify different items
from the search set is not constant, but instead varies ex-
ponentially. The allowance for varied sampling rates is,
of course, but one of many such elaborations that are
possible. One particularly detailed extension of the pure-
death process is the well-known search of associative
memory (SAM).

SAM
The random sampling account of a pure-death process

was used by Shiffrin (1970), and it provided the frame-
work for the SAM model described by Raaijmakers and
Shiffrin (1980). As these authors note, SAM depicts  re-
trieval as a repeated sampling of a “search set” that con-
tains images with differential “associative strengths”
such that the retrieval probability for each item is a di-
rect function of its associate strength divided by the sum
of the associative strengths of all items. Thus, if the as-
sociate strengths of individual items does not vary con-
siderably, the momentary retrieval probability for each
item is inversely proportional to the number of items
within the search set. In other words, latency reflects the
size of the search set. Of course, SAM requires further
assumptions in order to account for memory phenomena
other than recall latency.

Raaijmakers and Shiffrin (1980) presented SAM sim-
ulations that, according to our analyses, yield the same
results as those given by the experimental data of the
present paper, even though no such data were available
when Raaijmakers and Shiffrin performed the simula-
tions. Specifically, these authors presented four cumu-
lative recall curves given by a simulation that included
the manipulations of list length (10 or 40 items) and
study exposure (1 or 8 sec per word). We estimated the
data from their Figure 11, computed recall probability
and mean latency, transformed the cumulative data into
latency distributions, and then fit the exponential distri-
bution (the second stage of the ex-Gaussian). As is
shown in Table 8, the increase in list length, for either
study exposure, markedly reduced recall probability
while more than doubling mean latency, as in our Ex-
periment 2. The increase in study exposure, for either
list length, more than doubled recall probability, and had
little effect on mean latency, as in our Experiment 3. The
shift from the 10 rapidly exposed items to the 40 slowly
exposed items increased both probability and mean la-
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tency, as in our Experiment 4. Finally, the exponential
provided decent fits of the latency distributions, as is
shown in Figure 8. (Estimates of � differed from mean
latency because of the large bins, and statistical tests of
their chi-square values were not possible without knowl-
edge of the number of simulated trials.)

In the same paper, Raaijmakers and Shiffrin present
simulations of IRT growth partitioned by recall total for
a study list of 15 words presented for 2 sec each. These
plots of IRT growth exhibit the same characteristics as
those reported in this paper. In particular, for each recall
total, the last IRTs, the second to last IRTs, etc., are
strikingly similar in magnitude. Indeed, Raaijmakers
and Shiffrin note that “at any given output position the
interresponse time is a good predictor of the number of
words yet to recall” (p. 235). However, after visual esti-
mation of data points, and plotting of the growth of mean
IRTs collapsed across recall totals with respect to “re-
verse output position,” the pure-death hyperbola pro-
vided a systematically deviant fit of the simulated data.
In fairness, though, a better fit might have been achieved
if the mean IRTs for each recall total were first weighted
by its number of occurrences before averaging the mean
IRTs across recall totals (as done in Experiments 2, 3,
and 4), but the necessary information was unavailable.
Moreover, the analysis of IRT growth as a function of re-
verse output position assumes that subjects continue to

Figure 8. Recall latency distributions given by simulations of SAM
and the best-fitting exponentials.

search for the “last” item within the search set, whereas
SAM incorporates a stopping rule that can terminate the
search process prematurely.

Though SAM includes 10 parameters, Raaijmakers
and Shiffrin note that “most of the . . . parameters . . . are
not essential for the fit of the model to most of the data”
(p. 221) and that “Shiffrin (1970) fit a great deal of free
recall data with just three parameters” (p. 221). Like-
wise, the three-parameter ex-Gaussian, a simple exten-
sion of the pure-death process, quite adequately de-
scribes the nature of retrieval.

Phenomena Not Considered
Because the pure-death process presumes that yet-to-

be-recalled items have equal retrieval probabilities that
are independent of each other and remain constant over
time, it does not account for, or conf lict with, several
well-known experimental phenomena. First, a cluster,
two or three related items recalled in quick succession,
suggests that item retrievals are not always independent
of each other, whereas retrievals given by a pure-death
process are independent. Second, output interference, in
which an item retrieval interferes with subsequent item
retrievals, suggests that the item retrieval probabilities
are neither independent of each other nor constant over
time. Third, the pure-death process also does not ex-
plicitly address why an item’s serial position in the study
list affects its serial position in the output order.

Clustering. The extent of clustering depends greatly
on the experimental paradigm, as revealed by our analy-
ses. Though clustering may go undetected when laten-
cies are summed across trials, it cannot elude an IRT
analysis. Inspection of our own data revealed an occa-
sional brief IRT (i.e., the recall of two items in quick
succession) occurring relatively late in the recall chain,
suggesting that the retrieval of the two items may not
have been independent; that is, the two items may have
formed a clustered pair. Such pairs occurred infrequently,
though, for clustering was probably minimized by the
use of short, categorically unrelated, once-presented
study lists.

Moreover, the simulation of clustering reveals that
even a moderate number of interitem associations has
very little effect on the ex-Gaussian nature of latency
distributions. In particular, we performed two simula-
tions of 500 recall trials that included a brief, normally
distributed initiation stage and the subsequent random
sampling of an item from a search set once every sec-
ond. In the first simulation, targets were not associated.
In the second simulation, all targets were paired so that
the retrieval of one item resulted in the retrieval of its as-
sociate in the subsequent sampling. The nonclustered
simulation generated a latency distribution that was, of
course, fit exceptionally well by the ex-Gaussian. Some-
what unexpectedly, the clustered simulation generated a
latency distribution that was also fit well by the ex-
Gaussian, as is shown in Figure 9. However, as can be
seen in these simulated data, the ex-Gaussian underesti-

Table 8
Recall Probability, Recall Latency (in Seconds),

and Latency Distributions for SAM

Mean Mean Exponential Fits of

Study Recall Recall Latency Distributions

Condition Probability Latency �2 (df ) �

10 words
at 1 sec each .39 15.58 .09 (0) 14.35
at 8 sec each .82 16.10 .30 (1) 14.92

40 words
at 1 sec each .24 26.45 2.31 (3) 26.23
at 8 sec each .54 34.92 6.24 (6) 37.01

Note—Each �2 statistic, excluding the one with 0 df, was nonsignifi-
cant ( p 
 .1).
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mates the upper portion of the distribution tail and over-
estimates the middle portion of the tail. Because items
in clustered pairs have “twice the chance” of retrieval,
there is an initial increase in retrieval which necessarily
results in a subsequent decrease in recall. As clustering
increases, this kind of deviation becomes more extreme. 

The extent of clustering is most readily observed
through the analysis of IRTs; in fact, of the four previ-
ous episodic IRT studies, three have focused on cluster-
ing (Patterson et al., 1971; Pollio et al., 1968; Pollio
et al., 1969). In these studies, the growth of IRTs be-
tween clusters was compared with the growth of IRTs
within clusters, and the results of each study were con-
sistent with a two-stage sampling model. According to
this model, a cluster is first randomly sampled from a
collection of clusters, and then the items within that
cluster are randomly sampled until each has been re-
trieved. The random selection of clusters continues until
each cluster has been sampled. Thus, the growth of IRTs
between clusters depends on the number of clusters,
while the growth of IRTs within each cluster depends on
the number of words within that cluster.

Output interference. Although it is not disputed that
output interference can affect free recall, certain exper-
imental findings that are often viewed as evidence for
output interference do not conflict with the assumptions
of the pure-death process. For instance, although the de-
clining rate of recall seems to suggest that earlier recall
is impeding later recall, this decline is actually predicted
by the pure-death process, as can be seen in the hyper-
bolic growth of IRTs. Likewise, the oft-reported in-
hibitory effects of part-list cues upon the subsequent re-
call of other study items do indeed suggest output
interference, but not by previously recalled items. In-
stead, part-list cues, which are in fact retrieval cues, may
simply influence the delimiting of the search set and,
consequently, the probability and latency of recall. For
instance, Sloman, Bower, and Rohrer (1991) presented
subjects with part-list cues in an order intended to either
agree or conflict with the subjects’ presumed subjective
organization of list items. Only the conflicting order of
part-list cues significantly inhibited recall relative to a

free recall condition, suggesting that part-list cues do in-
deed affect the nature of the search set.

Nonrandom output order. The effects of an item’s
serial input position can only be partly reconciled with
the search-set sampling account. The effects of input po-
sition effect on recall probability (primacy and recency
effects) are not problematic; it may simply be the case
that the earlier and later study items are more often in-
cluded within the search set. But the effects of input po-
sition upon output position contrast with the assumption
of equal retrieval probabilities. To account for this ef-
fect, the model would require additional assumptions—
for example, multiple copies of early and late items
within the search set. The simple pure-death process
without extensions obviously cannot account directly for
the effects of subjective organization or the interrela-
tions between items held in long-term store as might a
more complex model such as SAM (Raaijmakers &
Shiffrin, 1980) or TODAM (Murdock, 1982). Neverthe-
less, as Vorberg and Ulrich (1987, pp. 5–6) observe,
“when considered as a limiting case that applies only
under conditions which minimize these factors, the
model is remarkable in its ability to predict certain tem-
poral properties of the retrieval from long-term mem-
ory.” Indeed, the quality of fit provided by the ex-Gauss-
ian distribution and the pure-death hyperbola in the
present experiments is more than adequate. But more
importantly, the utility of the pure-death process lies not
in its ability to describe but rather in its ability to inter-
pret. As Vorberg and Ulrich (1987, p. 3) conclude,
“under carefully contrived experimental conditions that
minimize the role of [long-term memory] organiza-
tional factors, the model may provide important insights
into the dynamics of retrieval from long-term memory.”
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APPENDIX A

The ex-Gaussian distribution, though conceptually quite
simple, is rather unwieldy in form, which perhaps explains
why it has appeared in several articles with typographical er-
rors. Likewise, an outline of its derivation given in Luce (1986,
p. 36), the only one that we have seen, includes a few typo-
graphical errors as well. For this reason, we present a full deri-
vation below.

The ex-Gaussian distribution is derived by mathematically
convolving the Gaussian distribution and the exponential dis-
tribution (cf. McGill, 1963, p. 315; Papoulis, 1965, pp. 134–
136). In particular, if the random variables x, distributed as
fx (x) for all x, and y, distributed as fy (y ) for y � 0, then the ran-
dom variable t � x�y has the distribution
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or

where (x) is the Gaussian cumulative density function.

APPENDIX B

This appendix includes the derivation of exponential cumu-
lative recall and exponentially declining rates of recall, given
a random sampling model (cf. Bousfield & Sedgewick, 1944;
McGill, 1963).

Let N equal the number of recoverable target items within
the search set and let S equal the total number of items within
the search set. Thus, the probability of choosing a recoverable
target on the first sample is simply the ratio N/S. If the first
sample was unsuccessful, the probability of success on the sec-
ond sampling would remain N/S. If the first sample was suc-
cessful, however, the probability of success on the second sam-
pling would decline to (N�1)/S. If we let R equal cumulative
recall, or the number of previously sampled recoverable tar-
gets, then the probability of success for any given sample
equals

(N�R) / S. (1)

This probability of success divided by the time needed to sam-
ple an item (t*) yields the momentary probability of retrieval,

(N�R) / (St*).

Replacing the constant St* with the constant � yields

(N�R) / �. (2)

The momentary probability of retrieval, when interpreted as a
continuous process rather than a discrete one, translates to the
rate of recall,
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r = (N�R) / �. (3)

Since the rate of recall equals the derivative of cumulative re-
call, r can be replaced by dR/dt. Rearrangement yields the dif-
ferential equation,

dR / (N�R) � (1/ �)(dt).

Integrating both sides yields

�ln (N�R) � (1/ �)t�C,

where C is the constant of integration. After exponentiating
both sides, rearrangement yields

R (t ) � N�e�Ce�t/�.

Since R�0 when t�0, e�C must equal N. More rearrangement
yields the cumulative exponential,

R(t ) � N (1�e�t/�) . (4)

Differentiating Equation 4 and replacing dR/dt with r yields

r (t ) � (N/ �)e�t/�. (5)

Thus, random sampling yields exponential cumulative recall
(4) and exponentially declining rates of recall (5). Further-
more, the mean latency of recall, given by the parameter in
Equations 4 and 5, is seen to equal �. Thus,

mean latency or � � St*. (6)

APPENDIX C

The nature of pure-death IRTs is discussed in detail in both
McGill (1963) and Vorberg and Ulrich (1987). A brief deriva-
tion of the explicit equation that describes the growth of mean
IRTs is given here.

As shown in Appendix B (Equation 2), the momentary prob-
ability of retrieval equals

(N�R) / �.

Thus, the momentary probability of retrieval decreases as the
number of items recalled (R) increases. Once each item is re-
called, the expected duration until the next item is recalled (i.e.,
the mean IRT) equals the reciprocal of the momentary proba-
bility of retrieval. Thus, the mean IRT that follows the Rth re-
sponse equals

� / (N�R) for R � 1, 2, . . . N�1.

If we define the IRT that follows the Rth response as the ith,
then the

mean ith IRT � � / (N�i).
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