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SUMMARY

In two experiments, 216 college students learned to solve one kind of mathematics problem before
completing one of various practise schedules. In Experiment 1, students either massed 10 problems in
a single session or distributed these 10 problems across two sessions separated by 1 week. The benefit
of distributed practise was nil among students who were tested 1 week later but extremely large
among students tested 4 weeks later. In Experiment 2, students completed three or nine practise
problems in one session. The additional six problems constituted a strategy known as overlearning,
but this extra effort had no effect on test scores 1 or 4 weeks later. Thus, long-term retention was
boosted by distributed practise and unaffected by overlearning. Unfortunately, most mathematics
textbooks rely on a format that emphasises overlearning and minimises distributed practise. An easily
adopted alternative format is advocated. Copyright # 2006 John Wiley & Sons, Ltd.

Perhaps no mental ability is more important than our capacity to learn, but the benefits of

learning are mostly lost if the material is forgotten. Such forgetting is particularly common

for knowledge acquired in school, and much of this material is lost within days or weeks of

learning. Thus, any learning strategy must be judged at least in part by students’

performance after a non-trivial retention interval (RI), a criterion that is typically ignored in

education research. Here, we present two experiments that examined how the retention of a

mathematics procedure was affected by variations in the temporal distribution of practise

or the total amount of practise.

Specifically, we assessed the learning strategies of distributed practise and overlearning.

When practise is distributed or spaced, a given amount of practise is divided across

multiple sessions. For example, once students have learned to solve a mathematics

procedure, the corresponding practise problems can be massed into one assignment or

distributed across multiple assignments. Most mathematics textbooks emphasise massed

practise, as most of the problems relating to a given topic typically appear in the same

practise set. By an overlearning strategy, a student first masters a skill and then

immediately continues to practise the same skill. Overlearning is particularly common in

mathematics because assignments typically require students to solve many problems of the
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same type. Notably, the term overlearning refers to a strategy and not the ultimate degree of

mastery. For example, one can master the names of the 12 calendar months without ever

using the strategy of overlearning. It is the strategy of overlearning that is assessed here and

not the utility of mastery.

The strategies of distributed practise and overlearning are not complementary and

cannot be compared directly. Instead, distributed practise must be compared to massed

practise by holding constant the total amount of practise. In Experiment 1, for example,

students worked 10 problems that were either distributed across two sessions or massed

into one session. By contrast, the benefits of overlearning are assessed by varying the

amount of practise within a given session. In Experiment 2, for example, students worked

three or nine problems in the same session. Because distributed practise and overlearning

are orthogonal, it is logically possible that neither, both, or just one of these two strategies is

beneficial. Naturally, both strategies have been the focus of numerous previous studies, but

a review of the literature reveals a few caveats, gaps and confounds.

DISTRIBUTED PRACTISE

In most distributed practise experiments, practise is either massed into a single session or

distributed across two sessions separated by a period of time known as the inter-session

interval. For example, if 10 math problems are divided across two sessions separated by 1

week, the inter-session interval equals 1 week. Importantly, the RI equals the duration

between the test and themost recent learning session. For example, if a concept is practised

on Monday and Thursday and tested on Friday, the RI equals 1 day. (Incidentally, practise

can be spaced within a session by presenting material on two different trials with at least

one intervening unrelated trial, e.g. Carpenter & DeLosh, 2005; Greene, 1989; Toppino,

1991, but the present paper focuses on the effect of distributing practise across sessions.)

Subsequent retention is often greater if practise is distributed rather than massed—a

finding known as the spacing effect (e.g. Baddeley & Longman, 1978; Bloom & Shuell,

1981; Cull, 2000; Fishman, Keller, & Atkinson, 1968; Seabrook, Brown, & Solity, 2005).

At brief RIs, however, spaced practise is typically no better or even worse than massed

practise (e.g. Bloom & Shuell, 1981; Glenberg & Lehmann, 1980; Krug, Davis, & Glover,

1990). By this latter result, massing just prior to an exam is optimal if the information needs

not be retained after the exam. At longer RIs, though, which are of greater interest to

educators, the benefits of spacing are often sizeable. Consequently, many authors have

urged a greater reliance on distributed practise (Bahrick, Bahrick, Bahrick, & Bahrick,

1993; Bjork, 1979, 1988; Bloom & Shuell, 1981; Dempster, 1989; Reynolds & Glaser,

1964; Schmidt & Bjork, 1992).

Even at longer RIs, though, the benefits of spacing are questionable for cognitive tasks

that are more conceptually demanding than those that require only verbatim recall. In one

meta-analysis by Donovan and Radosevich (1999), for instance, the size of the spacing

effect declined sharply as conceptual difficulty of the task increased from low (e.g. rotary

pursuit) to average (e.g. word list recall) to high (e.g. puzzle). By this finding, the benefits

of spaced practise may be muted for many mathematics tasks. Of course, not all

mathematics knowledge is conceptual. For example, Rea and Modigliani (1985) found a

spacing effect with young children who studied multiplication facts (e.g. 8� 5¼ 40).

While such concrete facts are certainly useful, the present study examines the benefits of

distributed practise for tasks that require more than the verbatim recall of atomised facts.
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A second reason to question the benefit of distributed practise for conceptual

mathematics tasks is given by a confound in the design of three previous mathematics

learning experiments that are sometimes cited as instances of a spacing effect. In each of

these experiments, the RI was shorter for Spacers than for Massers, and this confound

undoubtedly benefited the Spacers. In Grote (1995), for instance, the Massers practised

only on Day 1, while the Spacers’ practise continued fromDay 1 through Day 22. Yet every

student was tested on Day 36, leading to a far shorter RI for Spacers that undoubtedly

worked in their favour. The same confound arose in two mathematics learning experiments

reported by Gay (1973). We are not aware of any previously published, non-confounded

experiment that examines how the distribution of practise affects the retention of a

mathematics task that requires more than verbatim recall.

There are, however, non-experimental studies that have examined the effect of

distributed practise on mathematics retention. Most notably, perhaps, Bahrick and Hall

(1991) assessed the retention of algebra and geometry by people who had taken these

courses between 1 and 50 years earlier. A regression analysis showed that retention was

positively predicted by the number of courses requiring the same material. For example,

much of the material learned in an algebra course reappears in an advanced algebra course,

and the completion of both courses therefore provides distributed practise of this

overlapping material. That such distributed practise is beneficial is assessed here with a

controlled experiment, albeit with RIs that are measured in weeks rather than years.

OVERLEARNING

An overlearning experiment requires a manipulation of the total amount of practise within

a single session. In a typical overlearning experiment, subjects either quit studying once

they achieve a criterion of one correct instance (i.e. learn to criterion) or reach criterion and

then immediately continue to study (i.e. overlearn). In comparison to learning-to-criterion,

overlearning typically boosts subsequent test performance (e.g. Bromage & Mayer, 1986;

Earhard, Fried, & Carlson, 1972; Gilbert, 1957; Kratochwill, Demuth, & Conzemius,

1977; Krueger, 1929; Postman, 1962; Rose, 1992). This benefit of overlearning is also

supported by a meta-analysis by Driskell, Willis, and Copper (1992) who examined 51

comparisons of overlearning and learning-to-criterion with cognitive tasks and found a

moderately large effect of overlearning on subsequent test scores (d¼ 0.75). Hence, it is

not surprising that overlearning is widely advocated (e.g. Fitts, 1965; Foriska, 1993; Hall,

1989; Jahnke & Nowaczyk, 1998).

Yet a closer review of the empirical literature reveals that the long-term benefits of

overlearning remain unclear because most overlearning experiments have used relatively

brief RIs. For instance, in the Driskell et al. (1992) meta-analysis, only 7 of the 51

comparisons relied on a RI of more than 1 week, and the largest effect sizes were observed

for RIs lasting less than 1 hour. In fact, Driskell et al. concluded that RI moderated the

benefits of overlearning.

The possibility that the benefits of overlearning may dissipate with time is also supported

by three overlearning experiments with an explicit manipulation of RI. In Experiment 1 of

Reynolds and Glaser (1964), some students studied biology three times as much as other

students, and this threefold increase in study time led to a 100% boost in test scores 2 days

later that decreased to just 7% difference 19 days after learning. A similar decline in the test
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score benefits of overlearning was observed in two recent experiments reported by Rohrer,

Taylor, Pashler, Wixted, and Cepeda (2005).

Finally, it appears that the benefits of overlearning are especially unclear for

mathematics because, to our knowledge, no previously published overlearning experiment

has used amathematics task. Of those that used cognitive tasks (rather than motor tasks), all

employed a verbal memory task that almost always required the verbatim recall of either

paired associates or a list of words. In brief, it appears that little is known about the effect of

overlearning on mathematics retention.

TASK

In the experiments reported here, college students calculated the number of unique orderings

(or permutations) of a letter sequence with at least one repeated letter. For example, the

sequence abbbcc has 60 permutations, including abbcbc, abcbcb, bbacbc and so forth. The

solution is given by a straightforward procedure that is illustrated in the Appendix.

This task is moderately abstract, unlike the verbatim recall of an atomised fact (e.g.

8� 5¼ 40). In addition, students saw no problem more than once, ensuring that they could

not merely memorise the answer for a given letter sequence. Still, like most mathematics

procedures, the task is a memory task because students must remember a series of steps.

BASE RATE SURVEY

We assessed the base rate knowledge of this permutation task by testing a sample of

students drawn from the participant pool used in Experiments 1 and 2. We expected that

none of the students would be able to perform the task because this particular kind of

permutation problem appears in virtually no undergraduate level textbooks.

Method

Participants

The students were 50 undergraduates at the University of South Florida. These included 43

women and 7 men, and none participated in Experiments 1 or 2.

Procedure

Each student was given 3 minutes to find the number of permutations for the sequences,

aabbbbb, aaabbbb and abccccc. The answers are 21, 35 and 42 respectively.

Results and discussion

None of the students correctly answered any of the three problems, and none of their

written solutions exhibited any knowledge of the appropriate procedure. Some students

attempted to simply list every permutation but none succeeded. Thus, this mathematics

procedure appears to be mostly or entirely unknown to the participant pool used in

Experiments 1 and 2. Furthermore, if any of the participants in Experiments 1 or 2 did have

any relevant knowledge before the experiment, their presence did not confound the

experiment because participants were randomly assigned to condition.

Copyright # 2006 John Wiley & Sons, Ltd. Appl. Cognit. Psychol. 20: 1209–1224 (2006)
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EXPERIMENT 1

The first experiment examined the benefit of distributing a given number of practise

problems across two sessions instead of massing the same practise problems into one

session. As shown in Figure 1A, the Spacers attempted five problems in each of two

sessions separated by 1 week, whereas the Massers attempted the same 10 problems in

Session 2. Each group received a tutorial immediately before their first practise problem,

and the students were tested 1 or 4 weeks after their final practise problem.

Method

Participants

All three sessions were completed by 116 undergraduates at the University of South

Florida. This sample included 95 women and 21 men. An additional 39 students completed

the first session but failed to show for either the second or third session.

Design

Each student was randomly assigned to one of four groups: Spacers with 1-week RI

(n¼ 29), Spacers with 4-week RI (n¼ 29), Massers with 1-week RI (n¼ 31) and Massers

with 4-week RI (n¼ 27).

Procedure

The students attended three sessions. At the beginning of the first session, each student was

randomly assigned to one of the four conditions by the random distribution of paper

packets. Students were not told what tasks awaited them in future sessions. It is not known

whether some students practised the procedure outside of the experimental sessions,

although there was no extrinsic reward for test performance. If any self-review did occur,

we know of no reason why its prevalence would vary between Spacers and Massers.

The first two sessions were separated by 1 week. The Spacers completed five problems in

Session 1 and an additional five problems in Session 2, whereas the Massers completed the

same 10 problems in the second session. Thus, once students were assigned to conditions at

the beginning of the first session, the Massers departed before learning anything about the

permutation task. This meant that the Massers were required to attend the same three

sessions as the Spacers, thereby preventing a confound due to differential rates of attrition.

That is, if Massers had been required to attend only two sessions, the data for the Massers

(but not the Spacers) might have included students who attended the second but not the

third session. To the extent that these third-session non-attendees are less capable than their

cohorts, this confound would have worked in favour of the spacing effect.

The first practise problem was immediately preceded by a tutorial including two pages of

general instructions unrelated to the permutation task (3 minutes) and written solutions to two

sample problems, which are listed in the Appendix. The tutorial did not include the general

formula because it includes factorial expressions (e.g. n!) that we believed would be familiar to

some but not all of our participants. Instead, each tutorial example included a two-step solution

that excluded factorials and variables, and this procedure is illustrated in the Appendix.

Immediately after the tutorial, students began the 10 practise problems. The order of the

10 problems did not vary, and the specific problems are listed in the Appendix. Each

problem appeared on a page by itself within a booklet. Students were allotted 45 seconds to

solve each practise problem, and, immediately after each attempt, they were shown the
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solution for 15 seconds. The solution included the same two procedural steps that were

provided in the tutorial examples, as illustrated in the Appendix. The Massers received all

10 practise problems in the second session, whereas the Spacers received the first five

problems in Session 1 and the second five problems in Session 2. Notably, the Spacers did

not receive any review or tutorial during the second session.

One or four weeks after the second session (in which every student received their last

practise problem), students returned for the third and final session to be tested. The test

included the five test problems listed in the Appendix in the order shown there. The

problems were presented simultaneously, and students were allotted 5 minutes to solve all

five problems. No feedback was given during the test.

Results and discussion

Practise problems

The tutorial was sufficiently effective, as evidenced by performance on the five problems

given to every student immediately after the tutorial. Of the 116 students, 65 scored a

perfect five, 27 scored four, 12 scored three, 6 scored two, 3 scored one and 3 scored zero.

All further analyses included only those students who correctly answered two or more of

these five problems, thereby eliminating 12 of the 116 students.

Naturally, the Massers and Spacers performed equivalently on the first five practise

problems because these two groups underwent identical procedures until after they

attempted these problems. Specifically, the Massers averaged 88% (SE¼ 2.3%) and the

Spacers averaged 87% (SE¼ 2.5%), F< 1. For the second set of five practise problems, the

Massers’ average of 94% (SE¼ 1.6%) significantly exceeded the Spacers’ average of 85%

(SE¼ 3.2%), F (1, 108)¼ 6.79, p< 0.05, h2p ¼ 0.06. This difference was presumably due to

forgetting by the Spacers during the 1-week interval between their two practise sessions.

Test

Mean test accuracy is plotted in Figure 1B. The Spacers and Massers scored about equally

on the 1-week test, but a large spacing effect was observed on the 4-week test. An analysis

of variance revealed no main effect of spacing because of the 1-week parity, F (1,

106)¼ 3.67, p¼ 0.06, h2p ¼ 0.03, but the main effect of RI was significant, F (1,

106)¼ 12.92, p< 0.001, h2p ¼ 0.11. More importantly, the interaction between the size of

the spacing effect and the RI was also significant, F (1, 106)¼ 7.21, p< 0.01, h2p ¼ 0.06.

This effect of RI on the spacing effect was further confirmed by Tukey tests showing that

the difference between Spacers and Massers was reliable at the 4-week RI (p< 0.05) but

not the 1-week RI. The Tukey tests also showed that the decline between the 1-week and 4-

week test scores was significant for Massers (p< 0.05) but not Spacers.

In summary, the large spacing effect on the 4-week test suggests that the benefits of

distributed practise extend to conceptual tasks and are not limited to tasks requiring the

verbatim recall of atomised facts. While there was no spacing effect on the 1-week test, this

finding is consistent with previously published comparisons of spacing and massing at brief

RIs, as described in the introduction. This parity at 1 week is not problematic from a

practical viewpoint, though, because the possibility that the spacing effect grows with RI

would merely be another reason why long-term mathematics retention is better achieved

when practise is distributed rather than massed.
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EXPERIMENT 2

The second experiment assessed the effect of overlearning on retention by varying the

number of practise problems within a single session. The Hi Massers attempted nine

practise problems, whereas the Lo Massers attempted only three practise problems, as

detailed in Figure 1C. Because the Hi Massers were able to master the task during their first

three problems, their additional six practise problems constituted an overlearning strategy.

As detailed in the introduction, many researchers have found benefits of overlearning on a

subsequent test, but the majority of these experiments relied on single, relatively brief RIs.

In this experiment, students were tested either 1 or 4 weeks later.

Method

Participants

All three sessions were completed by 100 undergraduates at the University of South

Florida. The sample included 83 women and 17 men and none participated in Experiment 1.

B Test Results

Retention Interval (weeks)
41

A
cc

ur
ac

y

0%

100%

Spacers

Massers

D Test Results 

Retention Interval (weeks)

41

A
cc

ur
ac

y

0%

100%

Hi Massers

Lo Massers

75%
70% 64%

32%

69%
67%

28%
27%

Experiment 1

Experiment 2

C Practice Schedule

            session one    

        Hi Massers     9 problems
        Lo Massers   3 problems

A Practice Schedule 

             1 week apart    

      session one     session two

       Spacers     5 problems     5 problems
       Massers                        10 problems

Figure 1. (A) Practise Schedule for Experiment 1. (B) Test Results for Experiment 1. Error bars
reflect plus or minus one standard error. (C) Practise Schedule for Experiment 2. (D) Test Results for

Experiment 2. Error bars reflect plus or minus one standard error.
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An additional 17 students completed the first session but failed to show for the second

session.

Design

Each student was randomly assigned to one of four groups: Hi Massers with 1-week RI

(n¼ 28), Hi Massers with 4-week RI (n¼ 22), Lo Massers with 1-week RI (n¼ 24) and Lo

Massers with 4-week RI (n¼ 26).

Procedure

Each student attended two sessions separated by 1 or 4 weeks. At the beginning of the first

session, each student was randomly assigned to one of the four conditions. Each student

then observed a tutorial consisting of screen projections that included the solutions to

Problems 10, 11 and 12 of the Appendix, in that order. As in Experiment 1, these solutions

included the two steps illustrated in the Appendix.

Immediately after this tutorial, all students began the practise problems. Each Hi Masser

was given Problems 1 through 9 of the Appendix, and each Lo Masser was assigned three

of these nine problems. The three problems assigned to each LoMasser varied, so that each

of the nine problems was presented equally often. This was done to equate the difficulty of

practise problems given to Lo and Hi Massers. In addition, the nine problems given to the

Hi Massers were presented in one of three different orders so that the first three problems

corresponded to the only three problems given to a corresponding number of Lo Massers,

thereby equating the difficulty of the first three problems. The remainder of the procedure,

including the five test problems and the presentation of feedback after each attempt, was the

same as in Experiment 1.

Results and discussion

Practise problems

The tutorial was again sufficient to produce learning, as demonstrated by performance on

the first three practise problems (which were the only three practise problems given to the

Lo Massers). Of the 100 students, 65 correctly answered all three problems, 23 scored two,

10 scored one and 2 scored zero. As in Experiment 1, students with scores of zero or one

were excluded from further analysis.

As expected, there was no reliable difference between Hi and Lo Massers on the first

three problems because these two groups underwent the same procedure until after these

three problems were completed. Specifically, the Hi Massers averaged 90% (SE¼ 2.3%)

and the Lo Massers averaged 88% (SE¼ 2.3%), F< 1. For the additional six practise

problems given only to the Hi Massers, accuracy averaged 95% (SE¼ 1.3%).

Test

As shown in Figure 1D, there was virtually no difference between the Hi and LoMassers on

either the 1- or 4-week test. Consequently, an analysis of variance revealed no main effect

of the number of practise problems (F< 1) and no two-way interaction (F< 1). Yet the

main effect of RI was significant, F (1, 84)¼ 33.16, p< 0.001, h2p ¼ 0.28.

In brief, the threefold increase in the number of same-session practise problems had no

observable effect on subsequent test scores at either RI. This null effect of overlearning is

not well explained by a lapse in attention by the Hi Massers during their additional six

practise problems because these problems were solved with 95% accuracy.
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Thus, as more fully detailed in the General Discussion, these results provide no support for

the widespread belief that overlearning boosts long-term retention and therefore cast doubt on

the utility of mathematics assignments that include many problems of the same type.

GENERAL DISCUSSION

The present results suggest that the long-term retention of mathematics is aided by

distributed practise but not by an overlearning strategy. Specifically, Experiment 1 revealed

a boost in long-term retention when practise problems were distributed rather than massed,

and Experiment 2 found no benefit of overlearning via a threefold increase in total practise

problems. Thus, distributed practise produced a large benefit without requiring extra

practise, and overlearning required extra practise yet produced no observable benefit.

As detailed in the introduction, we know of no previously published, unconfounded

experiment showing a benefit of distributed practise for a mathematics task other than those

requiring only verbatim recall (e.g. 8� 5¼ 40). The results of Experiment 1, however,

suggest that the superiority of distributed practise over massed practise does, in fact, extend

to mathematics tasks that are at least moderately conceptual. Of course, the permutation

task was not as conceptually difficult as some mathematics tasks, as every problem was

based on the same procedure (unlike a series of mathematical proofs, for instance). Thus,

while it remains to be shown whether the current findings extend to far more demanding

types of problems, the present results nevertheless lead us to suggest that mathematics

students should increase their reliance on distributed practise.

By contrast, the null effect of overlearning in Experiment 2 is obviously at odds with the

widespread support for overlearning among educators and researchers. For example,

Jahnke and Nowaczyk (1998) advised, ‘Practise should proceed well beyond that

minimally necessary for an immediate, correct first reproduction’ (p. 181). Fitts (1965)

concluded that ‘The importance of continuing practise beyond the point in time where

some (often arbitrary) criterion is reached cannot be overemphasised’ (p. 195). Hall (1989)

wrote, ‘The overlearning effect would appear to have considerable practical value since

continued practise on material already learned to a point of mastery can take place with a

minimum of effort, and yet will prevent significant losses in retention’ (p. 328).

This advocacy for overlearning may reflect previous experimental findings showing

benefits of overlearning. Yet, as noted in the introduction, most previous overlearning

experiments relied on RIs of 1 week or less (and often less than 1 hour). Thus, the use of

moderately long RIs in the present experiment may partly explain the absence of any

observed benefit of overlearning.

It is important to note, however, that the null effect of overlearning observed here does

not rule out the possibility that a small amount of overlearning may be useful to

mathematics students. Strictly speaking, overlearning occurs if a student correctly solves

just two problems of the same type (in immediate succession) because the second problem

constitutes overlearning. Therefore, even the LoMassers in Experiment 2 relied on a small

amount of overlearning because most of them correctly answered two or all three of their

practise problems. Consequently, we do not endorse the extreme view that students work

only one problem of each type in a given session. Instead, we suggest that assignments

should err slightly in the direction of too much practise, perhaps by including three or four

problems relating to each new concept in the most recent lesson (in addition to any

examples given in the written lesson or class lecture). However, beyond these first three or
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four problems, the present data suggest that the completion of additional problems of the

same type is a terribly inefficient use of study time. Instead, our findings suggest that the

student should devote the remainder of the practise session to problems drawn from earlier

lessons in order to reap the benefits of distributed practise.

Conceptually, the minimal effect of overlearning on retention can be interpreted as an

instance of diminishing returns. That is, with each additional amount of practise devoted to

a single concept, there is an ever smaller increase in test performance. Thus, after the initial

exposure to a concept, the first one or two practise problems might yield a large increase in

a subsequent test score, but each additional practise problemwould provide little or no gain

unless it is delayed until a later session.

The theoretical question, then, is why these additional practise problems are beneficial

only when delayed until a later session. One possibility is that, after a certain amount of

practise is completed, additional practise is beneficial only if the initial practise has

undergone consolidation, a process by which memory traces are strengthened during the

time period immediately after the learning episode. That such consolidation occurs is

evidenced by the fact that activities undertaken during this post-learning time period are

known to affect subsequent test performance (e.g. Wixted, 2004). For example, retention is

increased if learning is followed immediately by sleep (e.g. Plihal & Born, 1997),

presumably because sleep enhances consolidation. It may be that consolidation reflects the

neural process of long-term potentiation, which requires more than an hour by even the

most conservative estimates (e.g. Lu, Kandel, & Hawkins, 1999).

IMPLICATIONS FOR MATHEMATICS TEXTBOOKS

Many mathematics textbooks rely on a format that fosters both overlearning and massed

practise. In these textbooks, virtually all of the problems for a given topic appear in the

assignment that immediately follows the lesson on that topic. This format induces

overlearning because each assignment includes many problems of the same kind, and it

also emphasises massed practise because further problems of the same kind are rarely

included in subsequent assignments. As an illustration, we examined every problem in the

most recent editions of four textbooks in pre-algebra mathematics or introductory algebra

that are very popular in the United States. The proportion of the problems within each

assignment that corresponded to the immediately preceding lesson, when averaged across

assignments, equalled between 75% and 92% for the four books. Thus, these practise sets

emphasise overlearning and massing.

Fortunately, there is an alternative format that minimises overlearning and massed

practise while emphasising distributed practise, and it does not require an increase in either

the number of practise sets or the number of problems per practise set. With this distributed

practise format, each lesson is followed by the usual number of practise problems, but only

a few of these problems relate to the immediately preceding lesson. Additional problems of

the same type might also appear once or twice in each of the next dozen assignments and

once again after every fifth or tenth assignment thereafter. In brief, the number of practise

problems relating to a given topic is no greater than that of typical mathematics textbooks,

but the temporal distribution of these problems is increased dramatically.

In addition to its apparent effect on retention, a distributed practise format may also

facilitate learning by allowing students ample time to master the particular procedure. For

instance, if a student is unable to solve a problem in the assignment immediately after the
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lesson relating to this type of problem, the student can seek help during the next class

meeting (or observe the solution of that problem by the instructor or fellow students) before

attempting additional practise problems in the next assignment. The same benefit arises for

students who are absent from class when a topic is first presented.

Because a distributed practise format ensures that practise sets include a variety of

problem types drawn from previous lessons, instructors who omit lessons need to ensure

that each assignment excludes problems corresponding to these omitted lessons. To

facilitate this task, the textbook can include an index listing the lesson corresponding to

each practise problem so that teachers can more easily avoid assigning problems that

students have not learned how to solve. This index would also direct students to the

appropriate lesson for help if they are unable to solve a practise problem.

The variety of problems within each practise set that inherently arises with a distributed

practise format might reduce the monotony of the assignment while also presenting an

additional challenge. Specifically, whereas a massed practise format allows students to

solve a problem and then merely repeat the same procedure thereafter, a distributed

practise format requires students to recall a variety of procedures from both the immediate

and distant past. This added challenge is worthwhile, though, if it boosts retention, thereby

providing an instance of what Bjork and his associates have dubbed a ‘desirable difficulty’

(Christina & Bjork, 1991; Schmidt & Bjork, 1992).

Notably, this mixture of problem types (that arises naturally with the use of a distributed

practise format) may provide benefits above and beyond the benefit of distributed practise

per se. This is because a practise set with a mixture of problem types requires that students

learn not only how to perform a procedure, but also which procedure is needed. For

example, the solution of the equation, x3� x¼ 0, requires the realisation that factoring is

necessary, which allows the equation to be rewritten as, x (x2� 1)¼ 0, and then,

x(xþ 1)(x� 1)¼ 0. By contrast, the equation, x2� x� 1¼ 0, cannot be solved by factoring

and instead requires the quadratic formula. However, learning to pair the appropriate

procedure with each kind of problem is a skill that is not learned during massed practise.

For example, if a lesson on the quadratic formula is followed immediately by a dozen

problems requiring the quadratic formula, it is obvious to the student that each problem

requires the quadratic formula. Of course, this cue is absent when such a problem appears

in a cumulative final or arises in a real world application, leaving the student unable to

recall which procedure is appropriate. By contrast, in order to complete a practise set with a

mixture of problem types, students must know which procedure is appropriate and how the

procedure is performed. Fortunately, mixed practise is an inherent feature of the distributed

practise format.

A distributed practise format is used in the Saxon (1997) series of mathematics textbooks,

although we are not aware of any published, controlled experiments that compare a Saxon

textbook to one with a massed practise format. However, such an experiment may not be

particularly informative because a Saxon textbook and a non-Saxon textbook would have

numerous differences that would confound the experiment. For example, if such an

experiment revealed that one textbook was superior to another, the observed difference

might reflect differences in the lessons rather than differences in practise sets. (Neither

author is affiliated with a publishing company, although the first author is a former

mathematics teacher who used both Saxon and non-Saxon mathematics textbooks.)

A more informative experiment would compare two groups of students who underwent

instructional programs that differed only in the temporal distribution of practise problems.

That is, each group would complete the same class activities and receive a course packet
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with the same lessons in the same order. Likewise, the packets would include the same

number of practise sets and the same practise problems, but the practise sets would rely on

either a distributed or massed practise format.

Textbook publishers could adopt a distributed-practise format with little trouble or cost.

For textbooks already in print, this could be accomplished by merely rearranging the

practise problems in the next edition, without necessarily altering the lessons. Oddly,

practise problems typically receive relatively little attention from publishers and textbook

authors, and the practise problems are often written by sub-contracted teachers. Yet the

practise sets are just as important as the lessons. In fact, as many mathematics teachers will

attest, a majority of their students never read the lessons and instead rely solely on

classroom examples before beginning the practise set.

Finally, the benefits of a distributed practise format are equally applicable to computer-

aided instruction packages. Unlike textbooks, these algorithms can provide individualised

training and error-contingent feedback, and an increasing number of educators and

agencies have urged greater reliance on such technologies (e.g. Department for Education

and Skills, United Kingdom, 2003). Yet most available computer-aided instruction

programs are designed to foster learning rather than retention. These computer programs

are easily adapted to incorporate distributed rather than massed practise, and students’

compliance to a distributed practise schedule can be verified by ensuring that the program

records the date of each use.

CONCLUSION

The results of Experiment 1 suggest that the retention of mathematics is markedly

improved when a given number of practise problems relating to a topic are distributed

across multiple assignments and not massed into one assignment. Moreover, this benefit of

distributed practise can be realised without increasing the number of practise problems

included in a practise set typical of most mathematics textbooks. Specifically, rather than

require students to work considerably more than just a few problems of the same kind in the

same session, which had no effect in Experiment 2, each practise set could instead include a

few problems relating to the most recent topic as well as problems relating to previous

topics. This distributed practise format could be easily adopted by the authors of textbooks

and computer-aided instruction software.

A boost in students’ mathematics retention would presumably contribute to an

improvement in mathematics achievement, and there is little doubt that there is widespread

need for such improvement. In one recent report on mathematics achievement, less than

one-third of a sample of U.S. students received a rating of ‘at or above proficient’ (Wirt

et al., 2004). Such reports often lead people to conclude that students are not learning, but it

may be that many mathematical skills and concepts are learned but later forgotten. The

prevalence of such forgetting may partly reflect the widespread reliance on practise

schedules that proved to be the worst strategies in the experiments reported here.
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APPENDIX

Students were taught to calculate the number of unique orderings (or permutations) of a

letter sequence with at least one repeated letter (e.g. aabbbb). For n items and k unique

items, the number of permutations equals n!/(n1! n2! . . . nk!), where ni¼ number of

repetitions of item i. Thus, for aabbbb, the number of permutations equals 6!/(2! 4!), or 15.

However, students were not shown this formula because we expected that the participants

would have vastly different amounts of experience with factorial notation.

Students were instead taught a two-step procedure that excluded factorials and variables.

For example, for the sequence aabbbb (with six letters, two occurrences of a, and four

occurrences of b), the solution began with the fractional expression,

6 � 5 � 4 � 3 � 2
ð2Þð4 � 3 � 2Þ :

This expression was supplemented by comments explaining the choice of the first digit

of each factorial expression. Thus, in this example, ‘six letters’ appeared to the left of the

numerator, and, just below the first digit of each parenthetical expression within the

denominator, there appeared the comments ‘a appears two times’ and ‘b appears four

times’. The second step of the solution required simplification by cancellation of like factors

from the numerator and denominator, followed by arithmetic. For this example, students saw

6 � 5
2

¼ 15:

PRACTISE SESSION PROBLEMS

The practise problems are listed below. In Experiment 1, the tutorial included Problems 11

and 12, and the 10 practise problems were Problems 1 through 10, in that order. In

Experiment 2, the tutorial included Problems 10, 11 and 12. The Hi Massers worked

Problems 1 through 9, and the Lo Massers worked just three of these nine problems. The

order of presentation varied for both groups, as explained in the Procedure section of

Experiment 2.

1. abccc 20
2. abcccc 30
3. aabbbbb 21
4. abbcc 30
5. aaabbb 20
6. aabbbb 15
7. aabb 6
8. abbccc 60
9. abccccc 42
10. aabbbbbb 28
11. abbcccc 105
12. abcccccc 56
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TEST PROBLEMS

In both experiments, the test included the following five problems in the order shown.

abcc 12
aabbb 10
aabbcc 90
aaabbbb 35
aaaabbbb 70
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